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ABSTRACT

Intelligent agents must be able to communicate intentions and explain their decision-
making processes to build trust, foster confidence, and improve human-agent team
dynamics. Recognizing this need, academia and industry are rapidly proposing new
ideas, methods, and frameworks to aid in the design of more explainable AI. Yet,
there remains no standardized metric or experimental protocol for benchmarking
new methods, leaving researchers to rely on their own intuition or ad hoc methods for
assessing new concepts. In this work, we present the first comprehensive (n=286) user
study testing a wide range of approaches for explainable machine learning, including
feature importance, probability scores, decision trees, counterfactual reasoning,
natural language explanations, and case-based reasoning, as well as a baseline
condition with no explanations. We provide the first large-scale empirical evidence of
the effects of explainability on human-agent teaming. Our results will help to guide
the future of explainability research by highlighting the benefits of counterfactual
explanations and the shortcomings of confidence scores for explainability. We also
propose a novel questionnaire to measure explainability with human participants,
inspired by relevant prior work and correlated with human-agent teaming metrics.

KEYWORDS
Explainable Artificial Intelligence, Trust, Human-Agent Interaction, Metrics

1. Introduction

Computational agents (e.g., robots or virtual agents) must be able to communicate
intentions and explain their decision-making processes to build trust, foster confidence,
and improve team dynamics (Boies, Fiset, & Gill, 2015; Paleja, Ghuy, Arachchige,
& Gombolay, 2021), and research is increasingly investigating how explainability is
necessary for many human-agent interactions and domains (Doshi-Velez & Kim, 2017;
Rudin et al., 2021). For agents to effectively interact with humans in human-agent
teams, agents must be capable of communicating their intentions and explaining
their decision-making process. Researchers have investigated explainability methods
for agents to empower users to better understand the reasoning behind the agent’s
behavior (e.g., through natural language generation (DeYoung et al., 2019), decision-
tree extraction (Silva, Gombolay, Killian, Jimenez, & Son, 2020), and counterfactuals
(Karimi, Schoélkopf, & Valera, 2021)). Yet, while researchers have recognized the
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need for agents to explain their decisions, we hypothesize that not all explainability
methods are equally effective at communicating information, and some methods
may even inhibit human understanding and collaboration. Current progress in the
field of explainable artificial intelligence (xAI) is hindered by a lack of standardized
measurement by which to evaluate explainability methods and a lack of clear
comparison across various xAl techniques.

As noted by recent surveys on xAl (Adadi & Berrada, 2018; Karimi, Barthe,
Scholkopf, & Valera, 2020; Rudin et al., 2021), explainability research lacks consistent
definitions and evaluations making it difficult to draw sound conclusions about the
efficacy of explainability techniques (Rudin, 2019). Additionally, such inconsistencies
often lead to conflicting takeaways. For example, Jain and Wallace (2019) published
“Attention is not explanation” just five months before Wiegreffe and Pinter (2019)
published “Attention is not not explanation.” Such contradictions are often contingent
on differences in definitions or expectations and leave researchers ill-informed on
whether to pursue attention for explanations. The enthusiastic pace of progress in
xAl is outpacing the ability of the community to settle these debates with rigorous
empirical or analytical study.

What is critically needed to pursue and adopt the most beneficial xAI methods for
human-agent teaming are standardized metrics and experimental protocols. In pursuit
of such a goal, prior research has put forth automated xAI metrics, such as model
stability or complexity (Rosenfeld, 2021) or natural-language benchmarks (DeYoung et
al., 2019), but very few prior works in xAl involve user studies with human participants
in their evaluations (Jain & Wallace, 2019; Karimi et al., 2020). When humans are
involved, the work typically takes a narrow look at a single method or use-case, and
therefore has limited implications for the field at large. While standardized agent
evaluation task sets (Bedny & Karwowski, 2003) and surveys exist in the literature
(Bartneck, Kuli¢, Croft, & Zoghbi, 2009; Hartson, Andre, & Williges, 2001; Jian,
Bisantz, & Drury, 2000; Nomura, Suzuki, Kanda, & Kato, 2006), there is not an
empirically-validated or agreed-upon survey to evaluate explainability of virtual or
embodied agents deployed to untrained human users (“lay” users, as defined by Ribera
and Lapedriza (2019)). To make progress on developing useful xAI that operates
effectively alongside human users, machine-learning researchers must have access to
shared, validated surveys and experimental procedures to benchmark different xAl
techniques.

In this work, we present the first evaluation of a battery of approaches to xAl
with human users in a large-scale user study (n=286). A visual overview of our
study is presented in Figure 1. For the first time, our work enables objective and
subjective evaluation of different xAI methods with real human users across axes of
performance, efficiency, trust, social-perception, and compliance. Rather than relying
on speculation for how humans might respond to different xAl approaches, we present
a true comparison in a between-subjects user study.

Based upon our results, we conduct a post-hoc factor analysis on a composite xAl
survey and find three potential dimensions of explainability we interpret as measuring
transparency (a1 = 0.83), usability (ag = 0.82), and simulatability (a3 = 0.81).
We show that a composite scale comprised of these dimensions is correlated with
measures of trust, perceptions of social competence, and performance. This new xAl
survey offers the potential of a quantitative scoring mechanism for xAl agnostic to
the particular technique being used, allowing for consistent evaluation of xAl across
studies, techniques, and demographics. We conclude with proposed future work that
will investigate the reliability and validity of this survey across multiple studies.
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Figure 1.: A visual walkthrough of our study. Participants first complete consent
forms, a screening task, and demographic surveys before beginning a priming task.
The priming task prepares participants to consider usability and transparency of
agent suggestions and explanations. Participants are then assigned a condition
and receive instructions for their assigned explanations before beginning the main
set of scenarios in our study. Each scenario includes a short paragraph of text,
a question, an explanation from a virtual agent, two Likert items assessing per-
scenario understanding and agreement, and four answer choices. After each question,
participants are shown the correct answer and a running tally of their overall score.
After completing all scenarios, participants complete a trust survey (Jian et al., 2000),
social perceptions survey (Bartneck et al., 2009), and our xAI survey.

1.1. Contributions

The primary contribution in our work is the first large-scale evaluation of the objective
and subjective effects of various forms of explainability on human-robot teaming. Our
results show that explainability strongly correlates with trust (p < 0.0001), social
competence (p < 0.0001), and performance (p = 0.01), and that counterfactual,
language-based feature descriptions, and case-based explanations are rated as more
explainable than probability scores (p < 0.01). We also contribute survey materials
and study design insights for future work to build upon our user study, including a
proposed explainability measurement survey to be verified in future work. Our results
help to inform the design of explainability approaches in the future by revealing both
the positive effects and potential risks of adopting different forms of xAl.

2. Related Work

In this section, we provide an overview of the literature that relates most closely to
our study and point to surveys for interested readers to review the latest advances in
xAL

2.1. Ezxplainability vs. Interpretability

With the rapid growth of work in xAl, debates over terminology persist. In our work,
we are explicitly concerned with ezplainable machine learning — that is, we present
explanations for model outputs from one of a set of popular approaches. Crucially,
within xAI, explanations do not necessarily reflect the ground-truth decision-making
of the model. Explanations may simply offer insight into how the decision was reached



(e.g., highlighting important features, presenting answer probabilities, etc.). Presenting
model explanations lies in contrast to interpretable machine learning, where the model
itself is easily read by a human (e.g., a small decision tree (Basak, 2004; Breiman,
Friedman, Stone, & Olshen, 1984; Olaru & Wehenkel, 2003), rule list (Angelino,
Larus-Stone, Alabi, Seltzer, & Rudin, 2017; C. Chen & Rudin, 2017; Letham, Rudin,
McCormick, Madigan, et al., 2015; Weiss & Indurkhya, 1995), or simple linear model
(Caruana et al., 2015)). The distinction between the two is important (Adadi &
Berrada, 2018; Lipton, 2018; Rudin, 2019), though still unsettled (Hase & Bansal,
2020). For more thorough surveys on the recent advances in xAl, we refer readers
to Holzinger, Carrington, and Miiller (2020), Linardatos, Papastefanopoulos, and
Kotsiantis (2021), and Hoffman, Mueller, Klein, and Litman (2018). We specifically
target ezrplainable methods in this work, being a broader class of algorithms and
techniques, though we include a decision-tree condition to compare to an interpretable
technique.

2.2. FEwvaluating Explainability

The question of how to appropriately evaluate xAl research is crucial and has
thus garnered much attention. Automated metrics, such as ROAR for feature
importance (Hooker, Erhan, Kindermans, & Kim, 2018), ERASER for natural-
language explanations (DeYoung et al., 2019), or model-agnostic measures such
as stability and complexity (Rosenfeld, 2021), attempt to approximate human
understanding with a benchmark or to score a method on how internally consistent
the method is. However, such approximations have never been thoroughly tested or
empirically validated with humans.

As opposed to employing automatic metrics, one could evaluate xAl on a
strict case-by-case basis by considering the deployment domain, users, model
performance (Saragih & Morrison, 2021), robustness, and more (Sokol & Flach, 2020).
While such a thorough evaluation may be preferable when possible, it is prohibitively
expensive to run such an evaluation on every model for every deployment domain.
The Explanation Satisfaction scale (Hoffman et al., 2018) measures the utility of an
explanation (either from a human or an xAI technique) as determined by experts in
the field of xAl. Crucially, this scale is not designed for an untrained population. What
we need is a tool to enable general comparison of how untrained human users perceive
and use xAlL

While we are unaware of any prior work that has performed a thorough comparison
of a multitude of xAI techniques on a large, untrained population, prior research
has empirically evaluated individual xATI techniques and use-cases with human users
in narrow cases (Hase & Bansal, 2020; Hutton, Liu, & Martin, 2012; Nguyen,
2018; Poursabzi-Sangdeh, Goldstein, Hofman, Wortman Vaughan, & Wallach, 2021;
Tintarev & Masthoff, 2012). Researchers have primarily examined whether or not
human users rate xAl as helpful, and such research has produced mixed results (Hutton
et al., 2012; Nguyen, 2018). Research with a limited sample population of computer
science students found that saliency measures (i.e., feature importance) helped improve
a user’s understanding of decisions (Hase & Bansal, 2020). Earlier research with crowd-
sourced users found similar results depending on the difficulty of the task, with harder
tasks leading to the perception of less-useful explanations (Hutton et al., 2012; Nguyen,
2018). Similarly, prior research has found that users tend to like explanations from
recommender systems given in the form of natural language (Tintarev & Masthoff,



2012). Most surprisingly, prior research on explainability and compliance has found
that users were more likely to agree with a decision-making tool if the tool provided
an explanation — even if the tool was incorrect (Poursabzi-Sangdeh et al., 2021). This
result runs counter to the intuition that more explainable methods will reduce human
over-trust. Generalizing the result of prior work Poursabzi-Sangdeh et al. (2021), our
large-scale study reveals that xAI makes no change in human compliance with a virtual
agent, while examining a broader set of xAI techniques. Our research drives at the
perceived utility of explanations, human compliance, performance, trust, and social
perceptions.

2.3. Human-Centric Explainability

As explanations often involve interaction with a human user, there is also prior
work on how to frame explanation research around the human in the loop (Ehsan
& Riedl, 2020). Research on human preferences has found that humans typically
prefer simpler explanations, only allowing for explanations to grow complex when
all of the components of the explanation are highly probable (Lombrozo, 2006,
2007). Miller (2019) provides a set of key insights and common themes relating
to human explanations and properties of explanations. Explanations in human-
human contexts often establish a common ground or knowledge-base from which
to make decisions or justify behaviors. Miller (2019) highlights various types of
explanations that may be applied to algorithmic explanation (e.g., Aristotle’s Four
Causes model (Lloyd & Lloyd, 1996)) and how these mechanisms might be leveraged
in different scenarios. Wang, Yang, Abdul, and Lim (2019), Liao, Gruen, and
Miller (2020), and, Schoonderwoerd, Jorritsma, Neerincx, and van den Bosch (2021)
approach explainability with an eye towards design, developing frameworks, question-
banks, or undergoing full case-studies to assist in the development of algorithms
for explainability. Similarly, Lage et al. (2018) provides explanation design insights
following a large-scale user study on the effects of explanation length, complexity, and
repetition on subjective preferences and human-user accuracy, finding that shorter and
simpler explanations were preferred. Related work has also examined how concepts
such as fairness, accountability, and transparency relate to explainability (Shin, 2021),
finding that causability plays a role in human trust.

In our work, we instead approach explainability through the lens of subjective
usability and preference. Specifically, we ask the question: Given various forms that
an explanation may take (e.g., language expressions (DeYoung et al., 2019), decision
trees (Weiss & Indurkhya, 1995), feature importance maps (Ribeiro, Singh, & Guestrin,
2016), etc.), which form is considered the easiest to use, interpret, and trust?

2.4. Explainability in our study

Our work compares seven broad categories of xAI methods including case-based
reasoning, decision trees, feature importance, probability scores, counterfactuals,
natural-language explanations, and crowd-sourced explanations. These seven were
chosen as overarching categories of xAl to broadly capture the scope of current xAl
research. Our seven conditions enable us to compare different modalities that may be
used for presenting an explanation (e.g., highlighting input features vs. presenting a
decision-tree), as well as comparing different forms of presenting the same information
(e.g., presenting percent-likelihoods for each answer vs. presenting a natural-language



sentence that includes an answer probability). Below, we present more detail on each
of the conditions in our study, and a visual example of each condition is given in Figure
2.

A case-based explanation (Barnett et al., 2021; Caruana, Kangarloo, Dionisio,
Sinha, & Johnson, 1999; Koh & Liang, 2017) shows training data that closely
resemble testing samples. Case-based explanations help end-users to understand
output decisions by relating the current input to a known data point and drawing a
connection to the previous, known label for such a data point. Seeing labeled training
examples that look like a given testing sample (Klein, 1993), the user may achieve
greater understanding of why the model produced a certain classification.

We also consider decision trees for explainability (Agarwal & Das, 2020; Bastani, Pu,
& Solar-Lezama, 2018; Craven & Shavlik, 1995; Murthy, 1998; Silva et al., 2020; Wu et
al., 2018). A decision tree is a graphical flow-chart showing a cascade of “True/False”
checks that lead to a decision. Each decision node includes a check against the input
data, which end-users may use to manually verify the output of the system. By
showing an interpretable flow-chart to an end user, the user is empowered to assess
and understand the decision.

We next examine attention/saliency mechanisms for xAI (Jain & Wallace, 2019;
Ribeiro et al., 2016; Suau, Zappella, & Apostoloff, 2020; Wiegreffe & Pinter, 2019)
by using a feature-importance based explanation (Caruana et al., 2015; Strumbelj &
Kononenko, 2014). These approaches show users the features of an input sample that
were the most important for a classification. The user can gain a better understanding
of a decision by ensuring that the features are reasonable or consistent with their own
expectations. Crucially, such models only reveal correlations between features and
predictions; they do not imply or predict causal relationships.

Our work also examines counterfactual explanations (Karimi et al., 2020, 2021;
Verma, Dickerson, & Hines, 2020; Wachter, Mittelstadt, & Russell, 2017). A
counterfactual explanation works by telling a user how a decision would be different
if perturbations were made to an input sample. Based on a counterfactual scenario,
a user can infer how the original decision was made, though claims around the true
explainability of current black-box counterfactual methods remain contested (White
& Garcez, 2021).

We also include explanations via natural language, which is an active area of
research dedicated to providing textual descriptions of classifications (H. Chen, Chen,
Shi, & Zhang, 2021; DeYoung et al., 2019; Ehsan & Riedl, 2020). Often, this work
involves gathering a large corpus of annotated explanations or images, which can then
be leveraged to learn a generative language model that produces natural-language
sequences to explain given model input samples and output predictions (Mishra &
Rzeszotarski, 2021). In our work, the natural language explanations are produced and
vetted by researchers and pilot participants to ensure quality and consistency.

Finally, we investigate probability (i.e., confidence) scores presented in the form
of “crowd-sourced” explanations (i.e., a natural-language sentence presenting the
percentages of experts that voted on an answer) or as a table of answer probabilities
for the human to interpret. Such a modality offers explainability by showing the
uncertainty of the model for a given input sample. Prior research on using confidence
scores as explanations (van der Waa, Schoonderwoerd, van Diggelen, & Neerinex,
2020; Zhang, Liao, & Bellamy, 2020) shows that such explanations improve user
trust and confidence. However, such results are contentious, as confidence scores can
vary significantly due to small perturbations in samples (Hogan & Kailkhura, 2018;
Kailkhura, Gallagher, Kim, Hiszpanski, & Han, 2019), suggesting that user trust may
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Figure 2.: An example for each of the xAl conditions in our study.

be misplaced.

Overview

Our research seeks to answer questions about the effects of using different classes of xAl
on trust, performance, perceptions of social competence or intelligence, compliance,
and efficiency when such methods are deployed as decision-aids for untrained humans.
While there is a vast landscape of xAl research and dozens of methods that could all
be compared and contrasted, we are interested in human perceptions and performance
with different classes of xAI. To ensure relevant, high-quality explanations, we wizard-
of-oz (WoZ) (Kelley, 1984) all explanations in the study and conduct multiple iterative
pilot studies with our explanations. Specifically, we investigate the following research
questions

(1) RQ1 — What is the relationship between agent explainability and human-rated
subjective metrics (i.e., user trust or social impressions)?

(2) RQ2 — What is the relationship between agent explainability and objective task
performance (i.e., accuracy and efficiency)?

(3) RQ3 — Are there significant differences in perceived explainability across the
classes of xAl in our study?

We note that our research questions are specifically around the relationships between
explainability and objective/subjective metrics, and we do not explicitly investigate
the causal relationship between explainability and the metrics in our study.

To answer these questions, we conduct a between-subjects user study in which
participants must answer a set of multiple-choice questions with the aid of a virtual
agent assistant. Our task involves answering a set of multiple-choice questions, where
each question relates to a short paragraph. The user receives an answer suggestion
from a virtual agent and an explanation drawn from one of the following conditions:

e Templated Language — Natural language citing the most relevant feature in
the question.



e Counterfactual — Natural language describing the second-likeliest answer and
how the scenario should change to produce the second-likeliest answer.

e Decision Tree — A graphic flow-chart with three “True/False” checks leading
to a classification.

e Probability Scores — Probability scores for each answer choice.

e Crowd-Sourced — The percentages of experts that selected each answer choice.

e Case-Based — Three short examples of prior scenarios and their associated
answers.

e Feature Importance — Relevance scores for each feature in the scenario.

e No Explanations — No explainability added.

4. Materials and Methods

We conducted a 1 x 8 between-subjects user study to answer our research questions.

4.1. Pilot Studies

Before beginning our full study, we conducted several iterative pilot studies to refine
our study design. Our pilot studies involved a total of 54 participants, running different
versions of the study over time. Through our pilot studies, we learned to increase total
compensation for our study, add a screening quiz, modify explanations, and improve
the explanation introduction portion of our study, after observing that our study took
longer than expected and garnered several low-effort responses (Buchanan & Scofield,
2018). Throughout, we iterated on instructions to improve completion rates.

4.2. Pre-Study

Participants first completed a consent form and then received a brief set of instructions
for the task. These instructions included an example scenario and an introduction to
the virtual agent and the rating scales that would be used to judge agent advice. After
receiving instructions, participants were given a five-question quiz on the instructions
they received, and any participant that did not answer all five questions correctly
was removed from the study. This quiz served to screen participants who might have
confounded our results (Buchanan & Scofield, 2018). After passing the instructions
quiz, we first collected demographic information from participants and asked them to
complete the negative attitudes toward agents (NARS) questionnaire (Nomura et al.,
2006) to measure whether such data might confound our results.

4.3. Scenarios

Our study consisted of showing participants a set of scenarios and then asking multiple-
choice questions. We show an example of one such scenario, with a Templated
Language explanation, in Figure 1. The scenario includes a short description that
provides background information about an imaginary person, ending in a question.
The participant is prompted to respond to two Likert items and to answer the question,
and participants assigned to an xAl condition see an explanation placed between the
agent suggestion and the two Likert items.



The questions in our study generally require the participant to infer something about
that person’s preferences, future decisions, or past actions. While some scenarios are
quite simple, others are more challenging or require specific areas of prior knowledge.
This range in difficulty promoted varied reliance on the agent throughout the study.
The scenarios were manually generated as commonsense reasoning questions and
refined through pilot studies and testing. All scenarios are included in the appendix.

4.4. Agent-based Decision-support

Central to our study was the assistance that participants received from a virtual agent
and the xAI method used. To offset any adjustment in the study, our instructions
indicated that the virtual agent was changed out for every answer, and the graphic
for the agent was cycled between different photos of a NAO robot. The NAO robot is
a 25-DoF humanoid robot from Softbank Robotics, shown in Figure 1. Additionally,
the agents were all referred to using a different ID to indicate that the agents were
not consistent across scenarios. For several pre-specified questions, the agent suggested
the wrong answer rather than the correct answer to measure inappropriate compliance
with agent advice.

Throughout the study, the virtual agent offered explanations for its suggestions to
the participant. These explanations were all created via WoZ and validated in our pilot
studies. When the agent suggested the wrong answer, the explanation supported the
wrong answer (i.e., the explanation and the wrong answer were internally consistent).

4.5. Priming Task

After completing our pre-study forms, participants advanced to the priming task,
involving five scenarios without agent explanations. Of these initial five scenarios, the
agent suggested the wrong answer once, showing participants that they could not
rely on the agent’s suggestion without considering whether the suggestion might be
true/false with the aid of the xAI provided. After the first set of scenarios, participants
completed our new xAl survey, developed to measure user-rated explainability of an
agent’s suggestions. By tasking participants with a set of scenarios and the new xAl
survey before they were assigned a condition, we primed users to consider how useful
or transferable the agent’s explanations might be for the remainder of the study.

4.6. Condition Assignment

Participants were randomly assigned to one of our conditions. For all conditions
other than Nothing, participants were given a brief walkthrough of how their
condition would work. For example, in the Decision Tree condition, participants
were introduced to the concept of a flow-chart as a decision-aid and were given
an example for how one might be applied and how it could be interpreted. This
introduction provided a high-level overview of how to read agent explanations, as
many xAI approaches (e.g., Feature Importance, Decision Tree, Case Based,
and Probability Scores) do not use natural language, and, therefore, could be
unintelligible to novice users without some level of introduction. However, we did
not provide in-depth explanations of how these methods manifest explanations, as
the purpose of our experiment is to evaluate how wuntrained participants would rate
different explainability measures. Examples from the introduction to each condition



are given in Figure 2.

4.7. Primary Task

Once the participants completed the priming task with five scenarios, they began
the primary task of the study, which was comprised of fourteen scenarios. The
agent offered incorrect suggestions on the fifth, seventh, eighth, tenth, and twelfth
questions. We fixed the ordering of all questions and answer suggestions to control
for any randomization effects on participant ratings at the end of the study. In total,
participants answered twenty total questions (i.e., one for instructions, five for priming,
and fourteen for the main body of the study) and the agent only offered incorrect
advice six times total; thus, the agent was correct more often than it was incorrect
(i.e., correct 70% of the time). If the agent had never been incorrect (or never been
correct), we would not have been able to study participant compliance or reliance with
the agent’s suggestions. We skewed the agent to be correct for 70% of the available
scenarios, as prior work suggests that a less accurate agent may have been discounted
entirely (Wiczorek & Manzey, 2014; Yang, Unhelkar, Li, & Shah, 2017).

4.8. Follow-up

After completing all twenty questions (one introductory, five priming, and fourteen
primary), the participants completed a trust in automation survey (Jian et al., 2000)
and the Godspeed survey (Bartneck et al., 2009) to provide us with metrics for the
effects of xAT on trust and perception of the agent. Finally, participants completed our
post-trial xAI survey (after initially completing it for the priming questions) and were
then given the opportunity to enter free-response text before completing the study.

4.9. £AI for Human-agent Interaction Survey Development

Our work leverages a novel XAl survey to measure human-rated explainability of agent
explanations and suggestions. We created a 30-question survey with items intended
to measure simulatability, transparency, and usability of the agent’s explanations.
Questions in the survey are targeted at these three primary axes after prior
work identified simulatability, transparency, and usability as important metrics for
explainability (Holzinger et al., 2020; Sokol & Flach, 2020). Questions in our xAl
survey were inspired by guidelines introduced in prior work (Hoffman et al., 2018;
Sokol & Flach, 2020) and prior surveys on usability (Brooke, 1996) and causality
(Holzinger et al., 2020).

As prior work has already established questionnaires to evaluate topics such as
usability (Brooke, 1996) and explanation faithfulness (Hoffman et al., 2018; Sokol &
Flach, 2020), we aggregated and extended existing questions rather than generating an
entirely new set of questions via interviews (Nomura et al., 2006) or a word-elicitation
process (Jian et al., 2000). Questions in our xAI include questions from prior work as
well as new questions specifically designed to re-test questions in prior work (e.g., by
including negations of existing questions). All items in the survey are rated on a seven-
point scale from “Strongly Disagree” to “Strongly Agree,” and the final explainability
score is calculated as the sum of all items in the questionnaire (adding the inverted
value for negative items). The full 30-question survey is given below, and citations to
relevant prior work are given for each question.
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(1) The explanations were detailed enough for me to understand. (Holzinger et al.,
2020)
(2) T understood the explanations within the context of the question. (Holzinger et
al., 2020; Shin, 2021)
(3) The explanations provided enough information for me to understand. (Holzinger
et al., 2020)
(4) T understood how the agent arrives at its answer. (Brooke, 1996; Hoffman et al.,
2018)
(5) I was able to use the explanations with my knowledge base. (Holzinger et al.,
2020)
(6) T would be able to repeat the steps that the agent took to reach its conclusion.
(7) Ithink that most people would learn to understand the explanations very quickly.
(Brooke, 1996; Hoffman et al., 2018; Holzinger et al., 2020)
(8) T would not understand how to apply the explanations to new questions.
(Hoffman et al., 2018)
(9) T would not be able to recreate the process by which the agent generated its
answers.
(10) T understand why the agent used specific information in its explanation.
(Hoffman et al., 2018; Holzinger et al., 2020)
(11) T understood the agent’s reasoning. (Brooke, 1996; Hoffman et al., 2018; Shin,
2021)
(12) I could have applied the agent’s reasoning to new problems, even if the agent
didn’t give me suggestions.
(13) The explanations were actionable, that is, they helped me know how to answer
the questions. (Hoffman et al., 2018)
(14) I believe that I could provide an explanation similar to the agent’s explanation.
(15) I would need more information to understand the explanations. (Holzinger et
al., 2020)
(16) I had trouble using the explanations to answer the question. (Brooke, 1996)
(17) I believe that the explanations would not help most people in answering the
question. (Hoffman et al., 2018)
(18) The explanations were an important resource for me to answer the question.
(Hoffman et al., 2018)
(19) T do not think most people would provide similar explanations as the agent’s
explanation.
(20) I think that most people would be able to interpret the explanation of the agent.
(Brooke, 1996)
(21) Most people would be able to accurately reproduce the agent’s decision-making
process.
(22) Most people would not be able to apply the agent’s explanations to the questions.
(Hoffman et al., 2018)
(23) T could not follow the agent’s decision-making process. (Holzinger et al., 2020)
(24) T could easily follow the explanation to arrive at an answer to the question.
(Brooke, 1996)
(25) The explanations were useful. (Brooke, 1996)
(26) T am able to follow the agent’s decision-making process step-by-step.
(27) The explanations were not relevant for the questions I was given.
(28) I understand how the agent’s decision-making process works.
(29) I could apply the explanations to the questions I was given.
(30) I could not figure out how the agent arrived at its suggestions.
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In the remainder of this work, we present results using the full 30-question survey
as a measure of explainability, comparing our results with surveys in the literature
measuring complementary phenomena (i.e., trust-in-automation (Jian et al., 2000) and
Godspeed (Bartneck et al., 2009)) and examining the relationship between participant-
rated explainability and objective/subjective metrics.

4.10. Procedure

We recall that participants first completed pre-study consent forms and a briefing of
the task, showing them one introductory scenario. Participants were then screened to
ensure high-quality responses, with failures on the screening task being removed from
the study. After finishing the screening task, participants provided demographic data
and then began a priming task of five scenarios that prepared participants to consider
the usability, transparency, and simulatability of agent suggestions and explanations.
Following the priming task, participants were randomly assigned one of eight possible
conditions and provided instructions for their assigned condition (e.g., participants
in the “Decision Tree” condition were taught how to read and interpret decision
trees). Finally, participants began the main body of the study and completed fourteen
scenarios of varying difficulty with the assistance of a virtual agent. Upon completion
of all scenarios, participants rated the agents on trustworthiness (Jian et al., 2000),
intelligence and likeability (Bartneck et al., 2009), and explainability.

4.11. Measures

We seek to quantify the relationship between explainability and trust, task
performance, and social perceptions of agents (i.e., is the agent “kind,” “amicable,”
and “socially intelligent?”) and to determine which approaches to xAI will provide the
greatest objective benefits to human-agent team fluency. Using the following metrics,
we can effectively capture both objective task performance and subjective impressions
of the virtual agent and explainability condition. To answer our research questions,
we employ the following metrics:

e M1 (RQ2) Completion time — how long it takes participants to complete the
primary task of the survey.

e M2 (RQ2) Accuracy — how many questions the participant answers correctly.

e M3 (RQ2) Compliance — how frequently the participant agrees with the agent’s
suggestion.

e M4 (RQ1) Social Competence — how participants perceive the agent as a social
agent according to the Godspeed questionnaire rating the agent on scales relating
to kindness, friendliness, intelligence, etc. (Bartneck et al., 2009).

e M5 (RQ1) Trust — participant’s trust in the agent as measured by the trust-in-
automation (Jian et al., 2000) survey.

e M6 (RQ1l) Explainability — participant’s self-rated understanding and
explainability as measured by the full xAI survey introduced above.

4.12. Participants

We recruited a total of 340 participants for our pilot studies and final study from
Amazon Mechanical Turk (Paolacci, Chandler, & Ipeirotis, 2010). Our study was
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Figure 3.: A depiction of our explainability results correlated to: (a) social perception,
(b) trust, and (c) accuracy and of trust correlated to accuracy (d). We find
trust, accuracy, and social perceptions were statistically significantly correlated with
explainability as measured by our xAl survey, both lending support for use of our
survey as a measure of explainability and addressing RQ1 and RQ2. We also observe
that trust and accuracy are statistically significantly correlated. Each dot represents a
data point with the regression line and confidence intervals drawn for each correlation.

approved by an IRB! and participants were compensated $5.00. After our pilot studies,
our final study included 286 participants (Mean age: 43.0; SD: 10.7; 52% Female). The
study took approximately 25 minutes.

5. Results

In this section, we review and discuss key results from our final study. We tested
all data for normality and homoscedasticity, and if parametric assumptions failed we
applied a non-parametric test.

LOur study was approved by the Georgia Institute of Technology IRB under Protocol H20522.
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Condition xAI Trust Social Competence
Templated Language | 170 (18.3) | 63.5 (8.96) 37.2 (4.12)
Counterfactual 177 (24.2) | 64.7 (10.5) 39.1 (5.34)
Decision Tree 164 (34.7) | 61.0 (10.4) 36.8 (5.54)
Probability Scores | 145 (42.3) | 61.3 (7.9) 37.8 (5.37)
Crowd Sourced 166 (25.4) | 60.5 (11.8) 35.2 (6.12)
Case Based 172 (18.3) | 66.2 (7.5) 39.5 (5.19)
Feature Importance | 167 (30.3) | 61.8 (11.1) 36.9 (5.34)
Nothing 158 (35.3) | 63.1 (12.1) 374 (6.37)

Table 1.: In this Table we report the mean and (standard deviation) for explainability
according to the our xAI survey scores, trust (Jian et al., 2000), and social competence
(Bartneck et al., 2009) for each of the conditions in our study.

5.1. Significant Findings

We summarize our significant findings here and provide average variables from our
analyses (Table 1) before providing deeper analysis on each research question further
below.

e Participant trust is correlated with agent explainability (p = .56, p < 0.0001)
(RQ1).

e Social competence of the agent is correlated with explainability (p = .43, p <
0.0001) (RQ1).

e Question-answering accuracy is correlated with explainability (p = 0.15, p =
0.01) (RQ2).

e Accuracy is correlated with trust (p = 0.16, p = 0.012) (RQ2).

e Probability Scores are rated as significantly less explainable than
Counterfactual (p < 0.001), Case Based (p < 0.001), Templated Language
(p < 0.001), Feature Importance (p < 0.01), Crowd Sourced (p = 0.025),
and Decision Tree (p = 0.039) explanations (RQ3).

e Counterfactual explanations are rated as significantly more explainable than
Nothing (p = 0.012).

5.2. Perceptions of Social Competence and Trust in xAI

We applied Spearman’s correlation with explainability as the independent variable
and social competence as the dependent variable. We found that explainability was
significantly correlated with impressions of the agent’s social competence (p = 0.43,
p < 0.0001) as measured by our xAI survey and the Godspeed survey (Bartneck et
al., 2009). We did not find any statistically significant change in perceptions of social
competence or intelligence of the virtual agent across our conditions.

Next, we applied Spearman’s correlation with explainability as the independent
variable and trust as the dependent variable. We found that explainability was
significantly correlated with trust (p = 0.56, p < 0.0001), as measured by our xAl
survey and the trust-in-automation survey (Jian et al., 2000). We further found that
no individual condition in our study was rated as significantly more trustworthy than
any other. Finally, we did not find statistically significant trends for compliance with
the agent suggestions in our study nor for reliance on the agent suggestions (i.e.,
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accepting correct advice or accepting incorrect advice). Neither explainability nor
condition had any effect on the number of times that participants chose to accept
the agent’s advice, suggesting that trust was unrelated to participants’ proclivity to
accept advice from the agent (either correct advice or incorrect advice). We include
results for participants’ self-reported agreement with incorrect agent suggestions in
the appendix, showing significant differences between the Decision Tree, Feature
Importance, and Templated Language conditions. As our self-reported agreement
and understanding results are drawn from a single Likert item rather than a full scale
with multiple correlated items, we do not report those results in the main body of this
work.

5.3. Objective Performance

By applying Spearman’s correlation with explainability as the independent variable
and performance as the dependent variable, we found that explainability was also
correlated with human-machine team performance (i.e., decision-making accuracy) in
our study (p = 0.15, p = 0.01), as measured by our xAl survey and the participant’s
final score on the primary task of our study. We additionally found that trust was
correlated with accuracy (p = 0.15, p = 0.012) via Spearman’s correlation with
trust as the independent variable and accuracy as the dependent variable. While
the agent offered more correct than incorrect suggestions, our results on compliance
with the agent suggest that participants did not blindly rely on agent suggestions in
any condition, regardless of their trust in the agent. We therefore hypothesize that
the correlation between trust and accuracy is independent of the number of correct
suggestions provided by the agent, though this hypothesis must be tested in future
work. Finally, we did not find any statistically significant change in accuracy across
our conditions. We found no effects for explainability nor condition (i.e., xAI method)
on completion time.

5.4. Explainability by Condition

An ANCOVA showed that certain conditions in our experiment were rated as
significantly more explainable than others (F7 277 = 4.20, p < 0.001). Our independent
variable is the explainability method (condition) and our dependent variable is the
participant’s score on our xAT survey. We include, as a covariate, participants’ baseline
xAl survey scores after the priming task. A Tukey’s HSD post-hoc analysis revealed
that Probability Scores scored significantly lower on our xAl survey than all other
explanation conditions, including Counterfactual (Cohen’s d = 0.918, SE = 0.25,
p < 0.001), Case Based (d = 1.093, SE = 0.26, p < 0.001), Templated Language
(d =0.738, SE = 0.24, p < 0.001), Feature Importance (d = 0.608, SE = 0.24,
p < 0.01), Crowd Sourced (d = 0.714, SE = 0.27, p = 0.025), and Decision
Tree (d = 0.597, SE = 0.25, p = 0.039) explanations. Similarly, Counterfactual
explanations scored higher than the Nothing condition (d = 0.701, SE = 0.23,
p = 0.012). Finally, we find no statistically significant differences in xAI survey scores
from our priming task across the experimental conditions in our between-subjects
design (Section 4.5) (F7 277 = 1.338, p = 0.232). We therefore attribute the differences
in xAI ratings to the differences among the conditions rather than any differences
between the subjects, who were randomly assigned to the experiment conditions..
Our results shed interesting insight into RQ3 and the effects of different xAl
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conditions on explainability. We found that the Probability Scores condition was
statistically significantly worse than all other approaches to explainability and scored
the lowest of all conditions on our xAl survey.

6. Discussion

6.1. Trust in zAI

Our results showed that trust and explainability (RQ1) were correlated measures. We
found that an increase in explainability was correlated with an increase in participant-
rated trust. Surprisingly, no condition was rated as significantly more trustworthy than
another, despite the strong correlation between explainability and trust.

In finding a positive correlation between trust and explainability, we confirmed the
intuition that an explainable agent is inherently more trustworthy. Regardless of the
mechanism of explainability, an agent that is perceived to be more explainable is rated
as more trustworthy. This finding also supports the validity of our xAl survey, as our
explainability metric is correlated with the validated trust-in-automation survey (Jian
et al., 2000). Importantly, there are not any overlapping questions between the trust-
in-automation survey and our xAl survey, and each survey targets fundamentally
different topics. While the trust-in-automation survey asks for ratings with respect
to the robot, our xAl survey is entirely centered around the explanations and their
utility. Regardless of these distinctions and differences, we find a significant correlation
between the two measures. This significant correlation is therefore not a function of
survey overlap or redundancy — instead we find that the concepts of explainability and
trust are truly correlated.

Observing no significant difference in trustworthiness across our conditions
(Case Based, Counterfactual, Crowd Sourced, Decision Tree, Feature
Importance, Nothing, Probability Scores, Templated Language), we stumbled
upon a surprising result. Despite our intuition that certain conditions would be
distinguished by trustworthiness, we did not find a statistically significant difference
in trustworthiness by method. While it is reasonable to expect that an agent that uses
natural-language would be perceived as more relatable and trustworthy or that an
explicit decision-tree would be more simulatable and verifiable, we found no condition
was significantly more trustworthy than another. In conclusion, we found that none of
our categories of xAI methods was definitively more trustworthy than any other.

Our findings suggest important avenues for future research. First, we corroborated
the initial findings of prior work (Poursabzi-Sangdeh et al., 2021) that explainability
alone will not reduce human over-reliance on automated decision-aids. Our work
generalizes this result, showing that compliance is nearly constant for all xAT methods
in our study. Therefore, future work must devise new approaches to human-agent
interaction that specifically target compliance and reliance, as such effects will not
simply be resolved by developing more explainable decision-aids. Second, future
research into trust and explainability must consider domain details and investigate
the utility of personalization. Future xAl systems will likely need to meet users
halfway, conforming to their preferred mode of explanation in order to maximize trust
and utility (Ehsan & Riedl, 2020). Our proposed xAI survey helps to guide such
work, providing a quantitative benchmark for human-rated explainability of an agent
partner.
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6.2. Objective Performance

Our results regarding performance and explainability (RQ2) were mixed. We found
that participants performed slightly better when they perceived their virtual agent
assistant to be more explainable (p = 0.01). Furthermore, we found that trust in the
agent was a factor in this result and accounts for some portion of the participant’s
increase in performance. As our virtual agent provided the correct answer for nine
of the fourteen scenarios, it is reasonable to expect that participants who trusted the
agent’s suggestions would have an above-average final score in our study. We speculate
that, in a study with more questions or a virtual agent with higher accuracy, this effect
would be more pronounced and there would be a stronger correlation between accuracy
and explainability.

While we found that explainability was correlated with accuracy, we did not find any
effect of condition or explainability on completion time. This result is surprising, as one
might expect the Nothing condition to have the lowest completion time (because there
is less information to review in each scenario). Instead, we found that no condition
was significantly faster than any other. Again, this result suggests that efficiency may
be domain-, or individual-specific, and that adapting to users may enable improved
human-agent team fluency (Ehsan & Riedl, 2020).

Our findings suggest that explainability significantly improves performance for
question-answering tasks and did not reveal an efficiency penalty incurred by adding
explainability. This result is significant, as it suggests that there be a minimal efficiency
cost associated with deploying xAl and there is a performance benefit to be gained by
leveraging xAl.

6.3. Social Competence

Our findings support the notion that an explainable agent is perceived as more socially
competent (RQ1). Participants rated their virtual agent assistants much higher on the
Godspeed questionnaire (Bartneck et al., 2009) when they perceived those agents to
be more explainable. This finding again validates our xAl survey, as our explainability
metric is once again correlated to the previously-validated Godspeed questionnaire
(Bartneck et al., 2009), and the correlation between the two is expected for a reasonable
explainability metric. Notably, our survey asks fundamentally different questions from
the Godspeed questionnaire, as we drive at the utility and explainability of an agent
rather than its perceived intelligence and likeability.

Interestingly, we did not find significance across conditions for perceptions of social
competence or intelligence in our xAl conditions. This finding is not as surprising,
as all conditions used similar images of NAO agents, all conditions included some
form of natural-language communication, and all agents had single-character names.
These name, appearance, and communication modalities would likely have made a
difference in social perceptions of the agent, as prior work has demonstrated that
anthropomorphism plays a significant role on such metrics (Natarajan & Gombolay,
2020). This result indicates that the appearance and communication modalities of an
agent may be greater factors in social perceptions of agents than xAl mechanisms.
Despite not finding significant differences across conditions, our results show that any
agent that is perceived to be more explainable will also be perceived as more socially
competent.
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Figure 4.: xAI mean scores for all methods. Our results show that Probability Scores
scored significantly lower on our xAl survey than all other explanation conditions,
including Counterfactual (p < 0.001), Case Based (p < 0.001), Templated
Language (p < 0.001), Feature Importance (p < 0.01), Crowd Sourced
(p = 0.025), and Decision Tree (p = 0.039) explanations, and Counterfactual
explanations scored higher than the Nothing condition (p = 0.012).

6.4. Explainability by Condition

Our results shed interesting insight into RQ3 and the effects of different xAI conditions
on explainability. We found that the Probability Scores condition was significantly
worse than other approaches to xAl, including Decision Trees, Crowd-Sourced,
Feature Importance, Case Based, Templated Language, and Counterfactual.

Our intuition regarding explainability by condition is that the simplest or clearest
explanations are the explanations which receive the highest scores according to our
xAl metric, as supported by prior research on simplicity in explanations (Lombrozo,
2007). Simple natural language explanations, such as in the Templated Language
and Counterfactual conditions, were rated as significantly more explainable than
an obscure explanation such as in the Probability Scores condition. Additionally,
we found Counterfactual was the only condition to be rated as significantly more
explainable than Nothing. We found further support for this observation in examining
two pairs of very similar conditions in our study: Templated Language vs. Feature
Importance, and Crowd Sourced vs. Probability Scores. Recall that Templated
Language and Crowd Sourced presented the top feature/answer in the form of a
sentence, while Feature Importance and Probability Scores presented a table
of features/answers and probability scores for each. In both pairs of conditions, both
Templated Language and Crowd Sourced removed information, yet were rated
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higher for explainability than their probability-weighting counterparts.

Our results suggest interesting avenues for future work. We observe that one
condition that did not rely on natural language was still rated very highly: Case Based
explanations. This observation suggests that case-based reasoning may be a fruitful
avenue for explainable decision-aids across many other domains, particularly those
for which it is well suited (Caruana et al., 2015). Similarly, we find that Templated
Language receives above-average xAl ratings on our survey, despite the lack of clear
“features” to be used in the language for many scenarios.

Finally, future work should consider ways to maximize the faithfulness of
counterfactual explanations. We find strong support for Counterfactual explanations
as an avenue for explainability with human participants, being rated as the most
explainable of all of our conditions and supported by research on human factors (Miller,
2019). However, recent research (White & Garcez, 2021) suggests that counterfactual
explanations are not often actionable or understandable explanations and may be
poor approximations of black-box model logic. Additional research on methodologies
for faithful construction of counterfactuals may help to yield powerful and readily
usable xAT technology.

7. Future Work

Our work introduces a survey designed to measure human-rated explainability of
different xAI mechanisms. In future work, we plan to validate this survey through
additional studies with new participant populations. We will also seek to replicate our
study in additional domains and with different participant populations (e.g., domain
experts). Finally, we aim to create a concise survey to be used by domain experts when
evaluating suggestions by xAI agents. In this regard we created a shortened survey
using factor analysis methods to remove redundancy. The validation of this shortened
survey is also left to future work. In the remainder of this section, we present the
design of this reduced xAl survey.

The participants in our study completed our 30-question xAl survey and we used
their responses to create a reduced version of the full survey that measures the same
primary components. We first conducted a factor analysis to analyze the different
questions in our survey (Spearman, 1904; Watkins, 2018). After we removed all items
with low factor loadings, the factor analysis reported that three factors were sufficient
(p = .165). We also ensured that each factor had at least four items, as concepts such
as usability, transparency, and simulatability are abstract and complex constructs
that fewer items may not adequately capture (Schrum, Johnson, Ghuy, & Gombolay,
2020). We then tested the reliability of each subscale using Cronbach’s alpha with
a1 = 0.83, ag = 0.82, and a3 = 0.81. This process resulted in a 14-question survey that
approximately captures explainability along these three axes— transparency, usability,
and simulatability. Our 14-question xAl survey is given in the appendix. We further
analyzed the reliability of the survey by sampling a third of the data and recalculating
Cronbach’s alpha for the subscales. After taking fifteen samples, we calculated the
mean, standard deviation, and 99% confidence interval for the Cronbach’s alpha for
each subscale: Factor 1 (M = .824, SD = .031, 99% CI = (.804, .845)), Factor 2 (M =
.823, SD = .037, 99% CI = (.798,.848)), Factor 3 (M = .809, SD = .016, 99% CI =
(.798,.820)). These results show that the subscales for transparency, usability, and
simulatability consistently have internal reliability (o > .7). The final “explainability
score” for our xAl survey is computed as the sum of all items (with negative items
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inverted), as in the full 30-question survey. We present analysis of our results using
the reduced 14-question xAl survey in the appendix, and we leave validation of this
reduced survey to future work.

8. Limitations

The primary limitation of our work is that our task was limited in scope, being confined
to a set of multiple-choice questions involving common sense inference. Our study
included a set of scenarios that did not significantly test any pre-existing knowledge
or reading comprehension. Our study drew on common sense and inference about
everyday life, revealing statistically significant differences across our population of
untrained users. Additional deployments of our study targeted at populations of
experts (such as medical professions, pilots, engineers, etc.) may yield additional
domain-specific and nuanced results around compliance, trust, and performance.

Our study could also be extended by applying real xAI techniques to produce
explanations for participants as explanations in our study were generated via WoZ.
However, a deployment of our study with state-of-the-art language generation systems
or feature-importance mechanisms may yield additional insights into the current
failings of xAl research.

Finally, we have produced a reduced version of our xAl survey that correlates with
the full version, but has not been empirically validated or verified through independent
study. Future work will investigate the legitimacy of the reduced, 14-Q xAl survey as
a tool for measuring participant-rated explainability.

In an effort to overcome these limitations in future work and to facilitate deployment
of studies similar to our own, we provide study resources (e.g., survey files, questions,
and tests) to the community. By leveraging our resources, other researchers will be
able to quickly deploy their own versions of our xAI study to different domains
or populations. By deploying more xAl studies to a wider variety of problems and
demographics, we can begin to draw broader conclusions about xAI applied to a
broader variety of challenges.

9. Societal Impact

Our work offers insight into the benefits of explainability when deployed to a
question-answering task with a population of non-expert users. In finding support
for explainability improving trust, social competence, and performance, we hope that
our work will encourage the wider adoption and deployment of xAI to the real world.

Generalizing findings of prior work (Poursabzi-Sangdeh et al., 2021), we found
several classes of xAl techniques may yield increased reliance on an agent decision-
aid, even when such a decision-aid is incorrect. Therefore, it is critical that future
developments and deployments of xAl take this finding into account. Without further
research on how to mitigate such over-reliance when deploying explainable agents,
xAl may inadvertently lead experts to make more mistakes, while simultaneously
reinforcing such mistakes with inaccurate explanations.
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10. Conclusion

In this work, we have described the design and results of a study to provide the
first quantitative insights into the effects of explainability on trust, performance, and
perceptions of social competence of virtual agents. We found that explainability was
significantly correlated with trust, accuracy, and social competence, and that such
findings were not dependent upon the method of explainability. We further found that
simple language-based explanations and case-based explanations were all perceived
as significantly more explainable than class-wise probability scores. Finally, we have
proposed an xAl survey to measure human ratings of explainable Al, supported via
correlations to trust, performance, and social competence. Our survey will be verified
in future work, and will help xAT researchers more rigorously evaluate their work with
human participants with a standardized measurement scale that can be applied to any
xATI deployed to human users.
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Appendix A. Reduced 14-Question xAI Survey

Echoing the results of our primary investigation with the full survey, here we present
results according to our reduced xAI survey. An ANCOVA showed that certain
conditions in our experiment were rated as significantly more explainable than others
(F(7,277) = 3.14, p = 0.003). Our independent variable is the explainability method
and our dependent variable is the explainability score. We include as a covariate
the participant’s baseline explainability score. A Shapiro-Wilk test revealed that
our data were not normally distributed, but we proceed with an ANCOVA due
to a lack of non-parametric alternative and the robustness of the F-test (Cochran,
1947; Glass, Peckham, & Sanders, 1972; Hack, 1958; Pearson, 1931). A Tukey’s HSD
post-hoc analysis reveals that Counterfactual was rated as more explainable than
Probability Scores (p = 0.002), as shown in Figure Al

The reduced questionnaire, after a factor analysis and verification is given in Table
Al.

Appendix B. Understanding and Agreement

Our scenarios included two Likert items for every question in the study: ”I understand
the reasoning behind the agent’s suggestion” and "I agree with the agent’s suggestion.”
Taking results from all participants on all questions, we have 3,672 responses for each
item. As each Likert item is not part of a full scale with additional context, prior
work (Schrum et al., 2020) suggests that analysis on such data may lead to premature
conclusions. However, owing to the added workload of a full Likert scale after each of
the 20 scenarios in our study, we decided to reduce our data collection to only two
items. Reducing the scale to two items drastically reduces the time and workload of our
study, yet still presents interesting data for analysis. We acknowledge the limitations of
statistical testing with single Likert items. As such, we present the following analyses
as interesting case studies of single-item responses and as possible avenues for future
work to explore further.

26



Table Al.: The reduced xAl Survey

Factor | Question

1 I had trouble using the explanations to answer the question.

1 I believe that the explanations would not help most people
to answer the question.

1 Most people would not be able to apply the agent’s explanations
to the questions.

1 I would not understand how to apply the
explanations to new questions.

1 The explanations were not relevant for the questions I was given.

2 The explanations were detailed enough for me to understand.

2 I understood the explanations within the context of the question.

2 The explanations provided enough information for me to
understand.

2 The explanations were useful.

3 I am able to follow the agent’s decision-making process
step-by-step.

3 I would be able to repeat the steps that the agent took to
reach its conclusion.

3 I understand why the agent used specific information in its
explanation.

3 I could have applied the agent’s reasoning to new problems,
even if the agent didn’t give me suggestions.

3 I believe that I could provide an explanation similar

to the agent’s explanation.
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Figure Al.: Reduced xAI mean scores and sub-scale mean scores for all methods. The
trends for the reduced scale match the full xAI scores, with the same ordering of
conditions. While sub-scale scores for usability do not present much variance across
conditions, the sub-scales of transparency and simulatability offer more variation
across conditions. Statistical analysis of the aggregated reduced xAl scores reveal that
counterfactual explanations score higher than probability scores (p < 0.05).

B.1. Understandability

An ANOVA showed that certain conditions in our experiment were rated as
significantly more understandable for every question than others (F(7,3664) = 10.29,
p < 0.001). A Tukey’s HSD post-hoc analysis revealed that the Case Based (M =
56.98, SD = 50.85), Counterfactual (M = 51.41, SD = 59.79), Crowd Sourced
(M = 65.37, SD = 38.43), Decision Tree (M = 54.45, SD = 58.39), Feature
Importance (M = 54.35, SD = 48.24), and Templated Language (M = 52.02,
SD = 58.12) conditions were all rated as more understandable than the Probability
Scores (M = 34.98, SD = 60.82) condition (p < 0.001). Similarly, the Nothing (M =
43.84, SD = 61.54) condition was rated as less understandable than the Case Based
(p = 0.006), Crowd Sourced (p < 0.001), and Feature Importance (p = 0.0497)
conditions. Finally, Crowd Sourced was rated as significantly more understandable
than both the Counterfactual (p = 0.007) and Templated Language (p = 0.011)
conditions. A comparison of all understandability ratings is shown in Figure Bla.
These results are very surprising. The Crowd Sourced condition presents the
same information as the Probability Scores condition, the only difference is that the
top confidence score is placed into a natural-language sequence and the three unused
confidence scores are removed. For example, instead of showing a table with 85%, 10%,
5%, and 0%, as in the Probability Scores condition, the Crowd Sourced condition
presents the sentence “85% of experts agreed on this answer.” Despite presenting the
same probability for the suggested answer in slightly different ways, we observe a
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Figure Bl.: (a) Condition has a significant effect on participant understanding of
agent suggestions, revealing that all xAI techniques are superior to softmax confidence
scores, and three techniques (feature importance, case-based reasoning, and crowd-
sourced scores) are superior to the “no explanation” condition. (b) Condition has
a significant effect on participant agreement with an agent, with decision tree
explanations prompting significantly more agreement.

significantly higher tendency for users to rate the Crowd Sourced condition as more
understandable.

One possible reason for this disparity is in the wording of the prompt: “I understand
the reasoning behind the agent’s suggestion.” While a set of confidence scores do
not offer insight into why the agent arrived at an answer, saying that “85% of
experts agreed on this answer” provides participants with enough information to
infer the agent’s reasoning. It is reasonable to assume that the agent chose the
answer because the largest portion of experts agreed upon the answer. Despite the
quantitative information being identical, users have more to infer with the Crowd
Sourced condition. This line of reasoning may also explain the relative superiority of
the Case Based condition, as users may infer that the agent’s decisions arise from
past experience. It is possible that our participants interpreted the prompt to be “I
understand how this agent was trained,” and imagined possible training data involving
expert opinions or prior cases.

Finally, and amusingly, we note that even the Nothing condition achieves a higher
mean-understandability score than the Probability Scores condition. Our hypothesis
is that confidence scores are not useful signals to untrained human users, offering little
insight into the decision-making process or the imagined training process of an agent
assistant. Even having no information at all may be less confusing to human users.

B.2. Agreement

An ANOVA showed that participant-rated agreement was also significantly affected
by condition, albeit to a lesser degree (F'(7,3664) = 2.63, p = 0.011). A Tukey’s HSD
post-hoc analysis revealed that participants were more likely to agree with an agent
in the Decision Tree (M = 48.23, SD = 63.13) condition than in the Feature
Importance (M = 33.22, SD = 68.75) condition (p = 0.0136). A comparison of
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Figure B2.: Condition has a significant effect on participant agreement with an agent
when the agent is offering incorrect suggestions, with decision tree explanations
prompting significantly more agreement than feature importance scores or templated-
language explanations.

all agreement ratings is shown in Figure Blb. We did not observe many statistically
significant relationships between condition and participant-rated agreement with the
virtual agent, which again corroborates our findings on xAl and compliance — namely,
that compliance is unaffected by xAl condition.

When we specifically investigated agreement with incorrect suggestions, an
interesting trend appeared. An ANOVA showed that participant-rated agreement was
significantly affected by condition (F'(7,1399) = 3.26, p = 0.0019). A Tukey’s HSD
post-hoc revealed that, again, participants were more likely to agree with an agent
in the Decision Tree (M = 10.76, SD = 68.58) condition than in the Feature
Importance (M = —13.71, SD = 66.20) or Templated Language (M = —13.51,
SD = 71.35) conditions at significance levels p = 0.018 and p = 0.0203, respectively.
We also observe that, of all of our conditions, only Case Based, Crowd Sourced,
and Decision Trees have positive average agreement scores. Results are shown in
Figure B2.

Taking into context our results between xAl condition and the participants’
compliance with the agent’s suggestions, this result is surprising. Despite five of our
eight conditions exhibiting negative average agreement with the virtual agent for
incorrect suggestions, we do not observe significant differences between conditions for
inappropriate compliance. In other words, our study suggests that untrained human
users may accept an agent’s suggestion even if they disagree with the agent and the
agent is wrong! It is possible that, despite disagreeing with the agent, users were fooled
by the agent’s confidence in its suggestions (e.g., the agent never says “I'm not sure”
or “Maybe the answer is...”), as there is abundant psychology research to suggest
that humans tend to over-trust confidence (Elaad et al., 2015; Judd, James-Hawkins,
Yzerbyt, & Kashima, 2005; O’Mara, Kunz, Receveur, & Corbin, 2019; Rollwage et
al., 2020; Schlenker & Leary, 1982; Schroeder, Tremblay, & Tremblay, 2021; Swann
& Ely, 1984; Thomas & McFadyen, 1995). If someone got a previous question wrong,
they might lose confidence in themselves and want to take the agent’s suggestions
(Hedlund, Johnson, & Gombolay, 2021). This result signals a need for xAI research
to empower human users to actively challenge or interrogate their agent assistants, or
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Figure B3.: Participant subjective agreement with agent suggestions is strongly
correlated with participant understanding of agent suggestions (R = 0.79, p < 0.0001)

for xAI agents to regularly remind users of their fallibility (Natarajan & Gombolay,
2020). At present, our results suggest that users may be feeling pressure to accept
agent suggestions even if they do not agree with such suggestions.

Finally, Pearson’s correlations revealed that agreement, understandability, accuracy,
and compliance were all statistically significantly correlated (p < 0.0001). Of these
correlations, understandability and agreement were the strongest (R = 0.79), followed
by agreement and compliance (R = 0.41), understandability and compliance (R =
0.32), agreement and accuracy (R = 0.16), and understandability and accuracy (R =
0.13). A comparison of understandability and agreement is shown in Figure B3.
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Appendix C. Scenarios

In this section we present all scenarios used in the study. Scenario 1 was presented
alongside instructions with how to use the interface and work with the virtual robot,
while the remaining scenarios did not include additional instructions or content (apart
from associated explanations). Scenarios 2-6 were used as the priming task, and
scenarios 7-20 were used as the main body of the study. For each question, the correct
answer is highlighted in bold, and the robots incorrect suggestion (where applicable)
is highlighted in bold and red.

C.0.0.1. 1. A soccer player arrives to the training facility early every day. After
several months of rigorous training and practice, the player still hasn’t managed to
make it into the starting team, with too much competition for their preferred position.
However, the player has significantly improved coordination, acceleration, and top-
speed. Which position is the player most likely to play?

(1) Attacker
(2) Defender

(3) Midfielder
(4) Goalkeeper

C.0.0.2. 2. Mark has just started running, and is trying to train for a local
marathon. The marathon is set to take place in a month, so Mark has been training
very hard. Unfortunately, a week before the marathon, Mark suffered an injury. Where
was Mark injured?

C.0.0.3. 3. John is preparing a garden behind his building. He dug up an old tree
stump and cleared out weeds to prepare a vegetable box, and must now prepare the
ground for seeds. How should John fill in the vegetable box before planting seeds?

Mixing soil and fertilizer
Mixing soil and clay

Mixing clay and fertilizer
Mixing clay and gravel

— — —

(1
(2
(3
(4

C.0.0.4. 4. Jane needs to attend a meeting on the other side of the country
tomorrow. Her company will pay for her expenses, the top priority is for her to
physically attend the meeting. What is the best way for Jane to get to the meeting on
time?

(1) Take a train
(2) Fly

(3) Drive

(4) Take a bus

32



C.0.0.5. 5. Monica has been working from home for the past several months, and
is constantly suffering from eye-strain and headaches from staring at her computer
monitor all day. Which of the following is the least likely to help reduce Monica’s
headaches and eye-strain?

(1) Use a blue light filter on her computer

(2) Do more work in the dark with the lights turned off
(3) Break up the day with walks outside

(4) Regularly take breaks to stare at distant objects

C.0.0.6. 6. James stops at a lookout while driving across the country to rest. While
there, he looks out across a herd grazing on a plain, composed of animals native to
North America. Which animals is James looking at?

1) Cattle
2) Domestic Sheep
3) Bobcats

4) Bison

C.0.0.7. 7. Everyday at 8:00 AM and 6:00 PM, a person’s pet needs to be fed a
scoop of food. The pet’s space in the house needs to be cleaned weekly and typically
takes under an hour to clean. The pet needs to go to the vet every 6 months. What
type of animal is the pet?

(1) Dog
(2) Cat
(3) Hamster
(4) Fish

C.0.0.8. 8. Jamie is an avid hiker. She loves to explore outdoors in cool weather with
just a light jacket, without worrying about bugs or heavy rainstorms, and particularly
enjoys venturing up into the mountains to walk along small streams. Unfortunately for
Jamie, her allergies always flare up as flowers bloom. Which season is best for Jamie
to go hiking

C.0.0.9. 9. Patrick has struggled to recreate a recipe he found online. He hasn’t
ever tried to cook this particular dish before, and he is finding it difficult to replicate
precisely. Because of the ways that altitude can affect cook times in ovens, Patrick is
finding that his finished product doesn’t look like the example online. Which food is
Patrick preparing?

(1) Bread

(2) Chicken

(3) Veggie Platter

(4) Homemade Chocolate
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C.0.0.10. 10. Shelby loves to read. In the past year, she’s finished several books by
Dostoevsky and Tolstoy, and others set in a violent coup or in a gulag. Which genre
does Shelby seem to prefer?

(1) Biographies

(2) Historical Fiction

(3) Russian Literature
(4) Gritty Fantasy

C.0.0.11. 11. Jean is busy training for the upcoming finals in her favorite sport. To
train appropriately, Jean is dedicating an hour each day to stretching and warming
up, and then alternating between 5 to 8 miles of distance training or an hour of speed
training. Jean’s teammates are also pushing themselves very hard, as they’ll all be
competing for first place. Which sport is Jean training for?

(1) Hurdles

(2) Cross Country
(3) Swimming

(4)

4) Soccer

C.0.0.12. 12. Arlo spends his days on his feet. He is often talking to other people,
though other people will only seldom have the opportunity to respond or to interject.
Arlo’s audiences often pay very close attention for an hour at a time, and then rotate
out for a new audience. Which profession best matches Arlo?

(1) Doctor

(2) Stage Performer

(3) Lawyer

(4) Teacher

C.0.0.13. 13. Carl enjoys the same drink every day. After he arrives to work,
stressed from the chaos of his commute, he always goes straight to the break room to
catch up with co-workers. Carl usually takes this time to calm himself down and try
to relax, not needing any more stimulation after his commute. Which drink does Carl
prefer in the break room before beginning work?

(1) Tea
(2) Coffee
(3) Whisky
(4) Soda

C.0.0.14. 14. Charon’s favorite music helps her get through tough workouts. When
she is exhausted and worn-out, the predictable and energetic rhythms of her favorite
songs will always help motivate her to finish. What type of music does Charon enjoy
for her exercise?

(1) Cinematic Soundtracks
(2) Jazz
(3) Rock
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(4) Classical

C.0.0.15. 15. Charlie lives 4 miles from his workplace in a city with heavy traffic.
His workplace is near a subway station, but Charlie’s house is 2 miles from a station
and he doesn’t like physical activity. Fortunately, his workplace offers bike racks in
the parking deck. Which mode of transportation best fits Charlie’s commute?

(1) Bike

(2) Electric Scooter
(3) Car

(4) Subway

C.0.0.16. 16. Jay is suffering from chronic headaches. He has been feeling bad for a
few months, ever since a knee injury forced him to stop running every afternoon. With
the added time, Jay has been much more active on social media, and he is excitedly
considering a career as an influencer. Which of the following is likely the cause of Jay’s
headaches?

(1) Increased screen time

(2) Less running every afternoon

(3) A change in diet

(4) Increased stress over his career choice

C.0.0.17. 17. Taylor tried to bake bread for the first time last week. Unfortunately,
he forgot to account for the mess created by kneading dough, causing him to coat his
hands in sticky dough and his clothes in flour. He also misread the instructions, as
his eyes were burning from chopping onions that he used in his dinner. Before he tries
baking again tonight, which change to his outfit should Taylor make?

(1) Wear white clothes
(2) Put on gloves
(3) Wear goggles
(4) Put on an apron

C.0.0.18. 18. Persephone is trying to cut down a tree to make more space for her
cars behind her house. After a few hours of exhausting work on a rainy summer day,
she managed to get the tree down and out of her yard. However, she was left with
a stump about four inches high and 10 inches across in the middle of her yard. How
should Persephone deal with the stump?

(1) Use a sledgehammer to hit it down into the ground
(2) Use an axe to cut more of the trunk away

(3) Use a shovel to dig it out

(4) Use a controlled fire to burn it away

C.0.0.19. 19. George is trying to complete a tour of European capitals before he
graduates. Next month, he will begin a study-abroad in Lyon, France where he will be
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able to visit new cities every month. Having never visited Europe before, where will
George go first?

(1) Paris
(2) Madrid
(3) London
(4) Berlin

C.0.0.20. 20. When the total solar eclipse crossed the country on a Wednesday
afternoon, thousands of tourists flocked to a narrow band of space where they would
be able to see the total eclipse. There were not many restaurants or shops to visit in
the path of the eclipse. How was traffic on the roads after the eclipse passed?

(1) No traffic

(2) Heavy traffic
(3) Light traffic

(4) Moderate traffic
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