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Abstract—When a robotic system is faced with uncertainty, the
system must take calculated risks to gain information as efficiently
as possible while ensuring system safety. The need to safely and
efficiently gain information in the face of uncertainty spans do-
mains from healthcare to search and rescue. To efficiently learn
when data is scarce or difficult to label, active learning acquisition
functions intelligently select a data point that, if the label were
known, would most improve the estimate of the unknown model.
Unfortunately, prior work in active learning suffers from an in-
ability to accurately quantify information-gain, generalize to new
domains, and ensure safe operation. To overcome these limitations,
we develop Safe MetAL, a probabilistically-safe, active learning
algorithm which meta-learns an acquisition function for selecting
sample efficient data points in safety critical domains. The key to
our approach is a novel integration of meta-active learning and
chance-constrained optimization. We (1) meta-learn an acquisi-
tion function based on sample history, (2) encode this acquisition
function in a chance-constrained optimization framework, and (3)
solve for an information-rich set of data points while enforcing
probabilistic safety guarantees. We present state-of-the-art results
in active learning of the model of a damaged UAV and in learning
the optimal parameters for deep brain stimulation. Our approach
achieves a 41% improvement in learning the optimal model and a
20% speedup in computation time compared to active and meta-
learning approaches while ensuring safety of the system.

Index Terms—Aerospace control, deep learning, learning
systems.

I. INTRODUCTION

ROBOTS need the ability to safely and efficiently learn
to operate in new environments, as it is not possible for

engineers to explicitly program responses for every contingency.
Robotic vehicles that could safely and efficiently learn their
own dynamics would be capable of adapting to novel dam-
age without crashing or needing to halt operation [20], [21].
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In healthcare, robotic devices, such as deep brain stimulation
(DBS) for epilepsy therapy, could automatically learn the opti-
mal waveforms to reduce harmful electrical activity in the brain
without patient-specific, manual tuning by a physician [1]. Ac-
tive learning techniques seek to address this problem by utilizing
an acquisition function to predict the expected informativeness
of a data point [28], which is defined as the change in model’s
testing accuracy when adding a new data point to the training
set [17]. By accurately estimating expected informativeness of
a data point, data points can be judiciously selected to improve
model accuracy and reduce uncertainty.

Researchers have previously investigated active learning tech-
niques for sample efficient learning [37], [38]. However, prior
work in active learning suffers from three weaknesses: 1) an
inability to accurately quantify expected informativeness [16],
2) a lack of generalizability [27], and 3) a lack of safety consider-
ations [29]. Active learning approaches typically hand-engineer
heuristics or acquisition functions to select the best action [15],
[29]. However, these heuristics are only proxies for true infor-
mativeness of a data point and may not accurately quantify the
actual informativeness of a data point when updating the model
with this new training data. Additionally, heuristics that are
well suited for one active learning domain may not be effective
in another. The few meta-active learning approaches proposed
in recent years rely only on hand-engineered features which
reduce generalizability and require expert feature selection [16].
Furthermore, prior approaches do not consider applications in
safety critical domains in which constraints must be placed on
the acquisition function to prevent the model from sampling
unsafe configurations [28].

Yet, efficient learning is not the only criteria that must be met
when dealing with safety critical domains. For example, when
learning the model of a damaged UAV, one must reason about the
safety of the system in addition to expected informativeness of
an action to prevent the UAV from entering into an unrecoverable
configuration. If the dynamics model of the damaged UAV can
be learned efficiently and safely, the UAV may be able to safely
land or even complete its assigned task despite the damage.

To achieve the goal of safe and efficient adaption, we intro-
duce (Safe Meta-Active Learning) Safe MetAL, a hybrid meta-
learning and mathematical programming approach that enables
efficient, safe, and computationally fast optimization of a latent
robotic system. The key to our approach is that we safely and
efficiently meta-learn an acquisition function based on a learned
representation of sample history that accurately quantifies the
expected informativeness for an unknown, latent model when
taking a given action and experiencing the resultant state. By di-
rectly encoding this acquisition function in a chance-constrained
mixed-integer linear program (MILP), we can simultaneously
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Fig. 1. Meta-learning framework, grounded in our UAV application. The red, blue and green curves represent the hypothetical manifolds within our distribution
of damage scenarios. Our meta-learning algorithm samples from the distribution of damage conditions and learns a function, Qφ, describing the expected
informativeness of taking an action. We embed this Qφ in a MILP to enforce safety-constraints, thereby ensuring safe flight while enabling efficient recovery from
damage.

enforce safety guarantees [29] while taking an action which
maximizes expected informativeness. This acquisition function
is meta-learned offline over a distribution of tasks, allowing the
policy to benefit from past experience and provide a more robust
measure of the value of a labeled data point.

We demonstrate the advantage of Safe MetAL across two
domains: 1) a high-dimensional damaged UAV domain and 2) a
novel DBS domain, both safety critical environments in which
sample efficiency is of utmost importance. Our approach out-
performs previous Bayesian [1], [35], meta-learning [16], [35],
and active learning approaches [15], [29] in terms of expected
informativeness, safety, and computation time.

Contributions:
1) We present Safe MetAL, a meta-learning algorithm for

learning a domain-specific acquisition function that accu-
rately quantifies expected informativeness. Safe MetAL
(1) meta-learns an acquisition function to quantify do-
main specific expected informativeness of a data point
without the need for hand-derived features and ad hoc
engineering, and (2) reasons explicitly about exploitation
vs. exploration by trading off gaining information and
probabilistically-safe control.

2) We formulate a novel bridge between deep learning and
mathematical programming techniques in a way that
is fully, end-to-end differentiable and trainable by em-
bedding this meta-learned acquisition function within a
chance-constrained optimization framework to achieve
probabilistic guarantees.

3) We show that our approach generalizes across two dis-
parate domains and sets a new state-of-the-art for increase
in model accuracy (41%) compared to Bayesian [1], [35],
active [15], [29] and meta-learning [16], [35] approaches
and computational speed (+20%) versus two active and
meta-learning baselines while also providing probabilistic
guarantees.

II. PROBLEM SET-UP

We describe our problem set-up via a motivating example:
learning the dynamics model of a damaged UAV. In this example,
our objective is to safely and efficiently learn the altered UAV
dynamics, f̂ψ , and maintain controllability of the system despite
damage. UAVs are susceptible to a range of failure scenarios

that are difficult to predict and model, and, when damaged,
UAVs have tight time constraints for recovery [3], [20], [21].
Specifically, we seek to determine the action the UAV should
take next to provide maximum information about the nature of
the damage given the UAV’s previously experienced states and
actions without going into unsafe configurations. To do so, we
learn a function that describes the expected informativeness of
taking any action, conditioned on the prior experience of the
UAV and subject to safety considerations. We set up our problem
in three steps: 1) active learning, 2) safety, and 3) meta-learning.

First, we define our unlabeled dataset, DU = 〈�s(i),�a(i)〉ni=1,
as consisting of all possible state-actions pairs that the UAV
could potentially experience and the labeled dataset, DL =
〈�s(i),�a(i), �s(i+1)〉mi=1, as the set of state transition triples ex-
perienced by the UAV in flight. �s(t+1) is the state that results
from applying action �a(t) in state �s(t) at time t as governed by
the latent dynamical model, f (Fig. 1).

Our Long Short-Term Memory (LSTM) neural network, with
parameters θ, learns an encoding of sample history, z(t) =
Eθ(S(t)). This sample history through time, t, is defined as
S(t) = 〈�s(0),�a(0), �s(1), . . . ,�a(t−1), �s(t)〉which we refer to as the
meta-state. Our acquisition function, Qφ : A× Z → R, learns
to map a candidate action, �a, to a measure of expected infor-
mativeness conditioned on the embedding of sample history,
�z. This problem setup corresponds to a Partially Observable
Markov Decision Process (POMDP), where the observations are
our samples, �s and the state describes the latent dynamics (i.e.,
the transition function, f ) with actions,�a, discount factor, γ, and
reward function,R, described below (2). We do not have access
to the observation function, Ω. Similar to [22], we convert this
POMDP to a Markov Decision Process (MDP) in which we use
function approximation to (1) learn a compact representation,
z(t), of the history of observations via Eθ and leverage this
representation to (2) train a history-dependent Q-function, Qφ

We utilize expected informativeness (i.e., improvement in
model accuracy due to the addition of new observations to the
training set) as our reward signal for training the network. To
determine the decrease in model error, as shown in (1), we create
a dataset,DTest, by sampling from the known dynamics model,
which we have access to during training. The reward signal,
R(t), which is defined in (2), is the decrease in model error
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Fig. 2. This figure depicts a g volume of safety, i.e. convex constraints around
reference trajectory, �sr(t). Action, �a(t), is an exploratory action, which may
bring the system outside of the safe region. Given f̂ψ(t) , Safe MetAL ensures

the probability that �a(t+2) returns the system to a safe state is at least 1− ε.

when applying action,�a(t), in state, �s(t), and experiencing state,
�s(t+1) (i.e.,DL ∪ 〈�s(t),�a(t), �s(t+1)〉). Intuitively, a large reward
means that we have selected an action that greatly decreases the
error of the dynamics model, f̂ψ . ψ is the parametrization of
f̂ψ(t) at time, t.

Lψ(DL) =
1

|DL|
|D|∑
i=1

(
f̂ψ

(
�s(i),�a(i)

)
− �s(i+1)

)2

(1)

R(t) =

(
Lψt(DTest)− Lψt−1(DTest)

)
Lψt(DTest)

(2)

Second, we need to incorporate safety when selecting the
optimal action. We consider the system to be safe if there is
a high probability of the system returning to a safe volume,
which we discuss further in Section III. Therefore, we encode our
acquisition function into a mixed-integer linear program (MILP)
which allows us to impose safety constraints and choose the set
of actions which maximize expected informativeness, while also
ensuring safety.

In our formulation, chance-constraints allow us to model
uncertainty and ensure the probability of failure remains under
a certain threshold. Thus, by utilizing a chance-constrained
MILP, we can efficiently arrive at a solution for non-convex
optimization problems while also providing probabilistic guar-
antees [5]. We transform each piece-wise term in our acquisition
function into a set of integer, linear constraints via the “big
M” method [13]. We solve our chance-constrained MILP via
linearization techniques discussed in [5], [29]. While limited
prior work [31] has explored safety and chance constraints for
learning and control, we go beyond this prior work by taking into
account the effect that querying a label has on the underlying
system’s ability to remain in a safe configuration. In our damaged
UAV and DBS domains, choosing a sequence of unsafe actions
can lead to the UAV crashing or an ictal state in the brain.
As depicted in Fig. 2, we assume a set of known safe states
(e.g., level flight above the ground for a UAV) and we allow
the system to deviate from a safe region temporally to gain
information provided that the system has a sufficient probability
of returning to a safe state. We elaborate on how these safe
states are identified and the external validity in Section IV. To
approximate the uncertainty of the states, we assume our model
error comes from a Gaussian distribution with a known mean
and variance calculated via the bootstrapping method described
in [15].

Finally, we seek to enable our system to generalize beyond a
single active learning task (e.g., damage to a specific part of the
UAV) to a broader class of tasks (i.e., any type of damage). We
aim to learn this acquisition function without hand-engineering
features or heuristics. Therefore, we incorporate meta-learning

to train our acquisition function, Qφ, and embedding of pre-
viously experienced states and actions, Eθ. We train Qφ over
a distribution of optimization problems (e.g., loss of vertical
stabilizer, wing damage etc.) to enable Qφ to generalize to an
unforseen damage scenario.

III. SAFE META-LEARNING ARCHITECTURE

Our architecture consists of three key components: 1) an
LSTM-based representation of sample history, 2) a meta-learned
acquisition function that accurately quantifies expected infor-
mativeness, and 3) safety constraints imposed via the linear
program. An overview of our architecture is shown in Fig. 1,
and is described below.

A. Policy

Our policy (Eq. 3) is determined by maximizing both the
probability of the system remaining in a safe configuration
and expected informativeness along the finite trajectory hori-
zon, [t, t+ T ). Therefore, our policy selects the set of actions,
�a(t:t+T ), which maximizes both safety and expected informa-
tiveness. We linearize our objective function following the lin-
earization procedures introduced in [29].

�a(t:t+T ) = π
(
Eθ(S(t))

)
(3)

=argmax
�a(t:t+T ),ε

λ
[
Qφ

(
�a(t:t+T ), �z(t)

)]
+ (1− λ) [1−ε]

subject to

1− ε ≤ Pr
{∥∥∥�s(t+T ) − �sr(t)

∥∥∥
1
≤ �r

}
(4)

Qφ(�a
(t:t+T ), �z(t)) describes the expected informativeness

along the trajectory when the set of actions, �a(t:t+T ), is taken

in the context of the sample history encoding, �z(t). π is the
chance-constrained policy which selects an action that the UAV
should take to maximize both expected informativeness and
safety. The LSTM neural network, Eθ, maps the sample history,
S(t) = 〈�s(0:t),�a(0:t)〉, (i.e., previously experienced states and
actions), to the encoding, �z(t). λ is a hyper-parameter that
allows us to adjust the trade-off between safety and expected
informativeness while still guaranteeing a minimum level of
safety. Properly balancingλ, as in any multi-criteria optimization
problem, requires domain expertise. The estimated probability
of remaining in a safe configuration is 1− ε, where ε ∈ [0, εmax]
and 1− εmax is the minimum acceptable safety level. We pro-
vide more details on safety in the following section.

B. Definition of Safety

Next, we detail our safety constraints which are enforced via
our MILP. We define a volume of safety, as depicted in Fig. 2,
around a desired reference trajectory, �sr(t), and enforce the
constraint that the system must be able to return with probability
1− ε to a state, �st+T , at time t+ T , such that �st+T is within
this volume of safety. Intuitively, this means that the UAV will
be able to take an action outside of the volume of safety to
gain information but must return to a safe state at time t+ T .
Mathematically, we define this safety constraint in (4).�sr defines
a safe state (e.g., straight and level flight for a UAV), and �r is the
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radius encompassing all known safe system states. The radius of
the volume is a hyperparameter defined by the user and requires
domain expertise to determine. The closer the user wants the
system to remain to the nominal safe state, the smaller the
radius should be. 1− ε is the probability of remaining in the safe
region. This volume can be converted into linear constraints, thus
creating a convex optimization problem [29]. Leveraging such a
pre-defined safety envelope is consistent with prior work in safe
robotics and chance-constrained optimization [9], [23]–[25],
[40]. By formulating our safety constraints in this way, we can
guarantee a minimum probability of safety while simultaneously
optimizing for additional safety and expected informativeness.
In other words, the MILP will select an action that meets the
minimum safety requirements, and if possible, will select an
even safer action than the minimum specified level of safety, all
other things being equal.

C. Meta-Learning

To infer the acquisition function, we meta-learn over a dis-
tribution of related tasks, which, in our motivating example,
consist of various damage modes of the UAV (e.g., wing damage,
actuator damage, etc.) as shown in Fig. 1. By meta-learning
over this distribution, we can construct an acquisition function
that accurately defines the expected informativeness of an action
when learning the unknown UAV dynamics model.

The acquisition function,Qφ, is trained via Deep Q-Learning
[11] with target network, Qφ′ , which has been shown in prior
work to improve training stability [33]. The learned acquisition
function, Qφ, is utilized by our MILP policy, which selects
the optimal actions, �a(t:T ), subject to safety-constraints. The
reward, R(t), for taking a set of actions in a given state is
defined as the decrease in the MSE error of the model, f̂ψ(t) ,
achieved by adding training data, 〈�s(t),�a(t), �s(t+1)〉, to DL, as
described in (1) and (2). The Q-function is trained on a set
of optimization problems drawn from a distribution of similar
black-box functions to minimize the Bellman Residual (5).

Lθ,φ =
(
R(t)+γQφ′

(
π
(
Eθ(S(t+1))

)
, �z(t+1)

)

−Qφ
(
�a(t), �z(t)

))2

(5)

This Bellman loss of the Q-function is backpropagated
through the Q-function in the MILP and through the LSTM
encoder, Eθ. The dynamics model, f̂ψ(t) , is retrained with each
new set of state-action pairs.

D. Algorithm

Algorithm 1 describes our training procedure. For each
episode, we sample from the distribution of altered dynamics
and limit each episode to the number of time steps, M , tuned
to collect enough data to accurately learn the dynamics. At
each iteration, we select �a(t) (line 6) via our MILP objective
described in (3) and execute the action to observe the resultant
state, �s(t+1) (line 7–8). Our dynamics model, f̂ψ(t) , is retrained
by minimizing the MSE, as shown in (1). After observing the
reward (2), we update our Q-function (line 11–12) via a sampled
batch of transitions.

Algorithm 2 describes how we perform our online, safe, active
learning. Intuitively, our algorithm initializes a new dynamics

Algorithm 1: Meta-Learning for Training.

1: Randomly initialize Qφ and Qφ′ with weights φ = φ′
2: Initialize replay buffer, D
3: for episode=1 to Ndo
4: Initialize f̂ψ(0) based on meta-learning distribution
5: for t=1 to M do
6: Select �a(t) from (3)
7: Execute �a(t) +N with exploration noise, N
8: Observe state, �s(t+1)

9: DL ← DL ∪ 〈�s(t),�a(t), �s(t+1)〉
10: ψ(t) ← argminψLψ(DL); observe R(t)

11: Update Qφ and Eθ via (5)
12: Qφ′ ← τQφ + (1− τ)Qφ′
13: end for
14: end for

Algorithm 2: Meta-Learning for Testing.
1: Draw test example from distribution
2: Initialize f̂ψ(0) based on meta-learning distribution
3: DL ← ∅
4: for t=1 to M do
5: Select �a(t) according to (3)
6: Execute �a(t)

7: Observe state �s(t+1)

8: DL ← DL ∪ 〈�s(t),�a(t), �s(t+1)〉
9: ψ(t) ← argminψLψ(DL)

10: end for

model (line 2) to represent the unknown or altered dynamics, and
we iteratively sample information rich, safe actions via our MILP
policy (line 5), update f̂ψ(t) , (line 9) and repeat. We assume at test
time that the unknown model comes from the same distribution
as the training models.

IV. EXPERIMENTAL EVALUATION

We compare Safe MetAL against several baseline approaches
in two experimental domains described below.

A. High-Dimensional UAV Domain

Safe control of damaged UAVs is a difficult problem
in robotics due to the tight time constraints and non-
linear dynamics. We test our algorithm’s ability to learn
the non-linear dynamics of a UAV before the UAV en-
ters an unrecoverable configuration (e.g., crashing). Be-
cause active learning algorithms can be ineffective in
high-dimensional domains, our aviation domain also serves
to stress test our algorithm’s ability to quickly learn a high-
dimensional dynamics model given tight time constraints. We
base our simulation on theoretical damage models from prior
work describing the full equations of motion [26], [36], [39]
within the Flightgear virtual environment. The objective of this
domain is to learn the altered dynamics that results from the
damage and to maintain safe flight. The UAV takes an informa-
tion rich action potentially resulting in a deviation outside of
the d-dimensional volume of safety, guaranteeing that the UAV
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Fig. 3. This figure depicts our empirical validation, generated via Monte Carlo simulation, in our robotic UAV domain benchmarking algorithm accuracy per
time step (Fig. 3(a)), overall expected informativeness over the time horizon (Fig. 3(b)), and vs. computation time (Fig. 3(c)). Error is calculated in batches of three
time steps, enabling the robot to deviate from the safe region temporarily to gain information. The results shown in Fig. 3(a) comply with safety results reported
in Fig. 3(b).

returns to a safe state with probability 1− ε via action �a(t+1) at
the end of the planning horizon.

B. Deep Brain Stimulation (DBS)

DBS is a cutting-edge approach for treating seizure conditions
that cannot be controlled via pharmacological methods. Cur-
rently, surgeons employ trial-and-error to find control settings
that reduce seizures. However, there is no clear mapping from pa-
rameter values to reduction in seizures that applies to all patients,
as the optimal parameter settings can depend on placement
of the device, the individual anatomy, and other confounding
factors. Further, a latent subset of parameters can cause negative
side-effects. In keeping with [1], we create simulation environ-
ments based on data from six rats where, at each DBS parameter
setting, the cognitive function of a rat is measured by a “memory
score.” Data from each rat is then dissimulated into many digital
twins of the rat, creating a population pool over which we can
meta-learn. To create these digital twins, we employ a validated
in silico procedure in which we bootstrap Gaussian Process
models trained on in vivo data of DBS in rats to create a virtual
experimental domain. The task is to determine the DBS pa-
rameters (i.e., signal amplitude) in the simulation environments
that maximize each rat’s memory score (i.e., rat’s ability to
recall the location of objects) without causing unwanted side
effects (e.g., memory deficits or seizures) which occur when
the memory score drops below zero. The reward signal utilized
by our meta-learner is the percent decrease in error between
the predicted and actual optimal parameters. This domain and
the established in silico evaluation procedure are described
further in [1].

V. RESULTS

A. Baseline Comparisons

To demonstrate that meta-learning is a vital component of
our framework and produces results superior to prior work, we
benchmark against active learning functions, Epistemic Uncer-
tainty [15] and Maximizing Diversity [29]. These active learning
functions are linearized and embedded in our safety constrained
framework therefore providing a head-to-head comparison be-
tween our meta-learned acquisition function and these active
learning heuristics. We additionally benchmark against several
Bayesian and meta-learning approaches. We empirically vali-
date that Safe MetAL outperforms baselines in the DBS and

UAV domains in terms of its ability to safely and actively learn
latent parameters.
� Epistemic Uncertainty [15] - Selects the action which

maximizes the uncertainy of the model, while also
imposing safety constraints via a chance-constrained linear
program.

� Maximizing Diversity [29] - Selects actions which max-
imize the difference between previous states and actions,
subject to safety constraints via a chance-constrained linear
program.

� Bayesian Optimization (BaO) [1] - Developed in previous
work for the DBS domain (Section IV) and is based upon
a Gaussian Process model which attempts to efficiently
determine the optimal parameters.

� Meta Bayesian Optimization (Meta BO) [34] - Meta-learns
a Gaussian process prior offline.

� Learning Active Learning (LAL) [16] - Meta-learns an
acquisition function leveraging hand-engineered features.

B. Active Learning

Results from both the UAV and the DBS domains empirically
validate that our algorithm more efficiently learns the optimal pa-
rameters (Fig. 4) and system dynamics (Fig. 3) in both domains
compared to baseline approaches. The Bayesian baseline, BaO
struggles to learn in the UAV domain, and we find that Meta BO
is computationally intractable due to the complexity of the task.
Again, Safe MetAL outperforms both active learning heuristics,
achieving a 46% improvement over Maximizing Diversity and
a 49% improvement over Uncertainty. Safe MetAL achieves a
47% higher expected informativeness versus LAL.

We find similarly positive results in the DBS domain. In
this domain, Safe MetAL selects an action that results in 58%
higher expected informativeness and a 267% higher expected
informativeness on average compared to our two Bayesian base-
lines, BaO and Meta BO respectively. Compared to our active
learning baselines, Maximizing Diversity and Uncertainty, Safe
MetAL performs 41% and 98% better in terms of average
expected informativeness respectively. This large increase in
expected informativeness that Safe MetAL is able to achieve
compared to hand-engineered heuristics, suggests that the meta-
learning aspect of Safe MetAL is vital for synthesizing a precise,
task-specific acquisition function. Lastly, we show that Safe
MetAL outperforms by 47% our meta-learning baseline, LAL,
which meta-learns over hand-engineered features. These results
demonstrate that our meta-learned embedding is more capable
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Fig. 4. This figure depicts our empirical validation in the DBS domain, benchmarking algorithm accuracy per time step (Fig. 4(a)), overall (Fig. 4(b)), and

vs. computation time (Fig. 4(c)). The optimal parameter accuracy is defined as 1− �a∗−�̂a
�a∗ where �a∗ is the optimal stimulation parameter and �̂a is the predicted

parameter. In Fig. 4(b) we also report the ground truth safety of our algorithm compared to baselines. The results shown in Fig. 4(a) comply with the safety results
reported in Fig. 4(b).

Fig. 5. This figure shows the results of our ablation analysis and the trade-off between expected informativeness and safety. In Fig. 5(a) (UAV domain) and 5(b)
(DBS domain), we set λ = 0, meaning there is no active learning and only safety is maximized. In both domains, our meta-learned acquisition function is an
important component to achieve efficient learning. Fig. 5(c), shows an ablation study, demonstrating the trade-off between expected informativeness and safety in
the UAV domain when we vary λ. We show that we can tune λ to achieve the desired tradeoff between expected informativeness and safe operation.

of extracting salient information than the hand-engineered fea-
tures in LAL. To further verify that the meta-learning aspect of
Safe MetAL is necessary for achieving high expected informa-
tiveness, we perform an ablation study as shown in Figs 5(a)
and 5(b).

C. Safety

Because Safe MetAL is able to more quickly learn the optimal
parameter settings, it is also able to ensure safe operation to a
greater degree than the baselines in both domains. To empirically
validate the safety of each algorithm, we perform a Monte Carlo
simulation and determine the percentage of the time that the
UAV is able to return to the safe region. We find that Safe
MetAL achieves an 87% probability the UAV will return to
the safe region (Fig. 3(a)). As shown in Fig. 3(b), Safe MetAL
outperforms the baselines simultaneously in safety and expected
informativeness in the high-dimensional UAV domain.

In the DBS domain, Safe MetAL achieves a 6.3% higher
guarantee of safety compared to Maximizing Diversity [29]
in Fig. 4. Safe MetAL achieves a 98% greater expected in-
formativeness compared to Uncertainty [15] and achieves an
equivalent safety guarantee. In Fig. 5(c), we show the trade-off
between the probability of safety as determined by the MILP
and the expected informativeness of an action as a result of
adjusting λ. This flexibility allows for greater emphasis on safety
in more safety critical domains, whereas in less safety critical
domains, these constraints can be relaxed in favor of higher
expected informativeness.

D. Computation Time

The computation time of active learning algorithms can
be of critical importance especially in highly unstable sys-
tems such as a damaged UAV. Across both domains, Safe
MetAL not only achieves a more efficient reduction in model
error and improvement in expected informativeness, but we
are also faster than all baselines in the high-dimensional
UAV domain (Fig. 3(c)). We demonstrate that we are 20%
and 29% faster than the baseline acquisition functions,
Uncertainty [15] and Maximizing Diversity [29] respectively.
We also demonstrate that we are more than 69 times faster
than our meta-learning baseline [16] and 78% faster than our
Bayesian baseline, BaO [1].

In the DBS environment (Fig. 4(c)), BaO has a slight ad-
vantage in computation time, but Safe MetAL trades the time
for 58% greater expected informativeness. Additionally, Safe
MetAL is 68x faster than LAL and 61x faster than Meta BO,
our two meta-learning benchmarks.

VI. RELATED WORK

A. Active Learning

Active learning acquisition functions provide heuristics to
select the candidate unlabeled training data sample that, if
the label were known, would provide the most information
to the model being learned [6], [7], [14], [15]. In [15], the
sample is selected that the learner is least certain about. In
work by [1], the authors utilize Expected Improvement (EI)
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heuristic to balance exploration versus exploitation to determine
the optimal stimulation parameters in DBS. Prior literature
has also investigated on-the-fly active learning and meta-active
learning [2], [16]. [16] describes the algorithm Learning Active
Learning (LAL). The authors present a meta-learning method for
learning an acquisition function in which a regressor is trained
to predict the reduction in model error of candidate samples
via hand engineered features. Volpp et al. [34] alternatively
considers a Gaussian Process based method to meta-train an
acquisition function on a distribution of tasks. Work by Geifman
et al. [12] actively learns the neural network architecture that
is most appropriate for a given task, e.g. active learning. Pang
et al. [27] additionally proposed a method to learn an acquisition
function that generalizes to a variety of classification tasks. Yet,
this work has only been demonstrated for classification.

B. Meta-Learning for Dynamics

Prior work has attempted to address the problem of learning
altered dynamics via meta-learning [8]. Belkhale et al. [4] inves-
tigated a meta-learning approach to learn the altered dynamics of
a UAV carrying a payload; the authors train a neural network on
prior data to predict environmental and task factors to inform
how to adapt to new payloads. Finn et al. [10] presented a
meta-learning approach to quickly learning a control policy. In
this approach, a distribution over prior model parameters that are
most conducive to learning the new dynamics is meta-learned
offline. While this approach provides fast policies for learning
new dynamics, it does not explicitly reason about sample effi-
ciency or safety.

C. Safe Learning

Prior work has investigated safe learning in the context of
Bayesian optimization and safe reinforcement learning. For
example, Sui et al. [30] developed the SafeOpt which balances
exploration and exploitation to learn an unknown function; how-
ever, this approach makes significant limiting assumptions about
the underlying nature of the task. Turchetta et al. [32] safely ex-
plore an MDP by defining an unknown safety constraint updated
during exploration, and Zimmer et al. [41] utilize a Gaussian
process for safely learning time series data. Additionally, Nakka
et al. introduced Info-SNOC which utilizes chance-constraints to
safely learn unknown dynamics [19]. However, these approaches
do not incorporate knowledge from prior data to increase sample
efficiency, limiting their ability to choose the optimal action.
Schrum and Gombolay [29] attempt to overcome this problem
by employing a novel acquisition function, Maximizing Diver-
sity, to quickly learn altered dynamics in a chance constrained
framework. Yet, the hand engineered acquisition function limits
the capabilities of this approach.

VII. DISCUSSION

We present a novel architecture, SafeMetAL, which, unlike
previous hand-engineered approaches, leverages sample history
to meta-learn a domain-specific acquisition function for safe and
efficient control of an unknown system. Through our empirical
investigation, we demonstrate that our meta-learned acquisition
function operating within a chance-constrained optimization
framework outperforms prior work in active learning, meta-
learning, and Bayesian optimization [1], [15], [16], [29], [35].

Our approach simultaneously increases expected informative-
ness while decreasing computation time. Safe MetAL achieves
a 41% increase in expected informativeness while decreasing
computation time by 20% versus active learning and Bayesian
baselines in the DBS domain and is more than 60x faster
versus meta-learning baselines in the UAV domain. We find
that MetaBO is ill-suited for the UAV domain due to its high
dimensionality.

Furthermore, our chance-constrained framework combined
with higher sample efficiency results in greater probability of
safe operation compared to prior work. The safety results for
both LAL and BAO in our UAV domain are very poor due to
the fact that both lack built-in safety constraints. Taking a single
action in the unstable UAV domain that does not comply with
any safety guarantees results in the UAV moving out of the safe
region and into an unrecoverable configuration.

We additionally demonstrate state-of-the-art performance in a
healthcare domain, demonstrating that our approach generalizes
across diverse systems. We are able to outperform all active
learning and meta-learning baselines in expected informative-
ness and safety. We thus demonstrate Safe MetAL’s ability to
learn the dynamics of a high-dimensional and safety critical
UAV as well as the optimal parameter setting for control of a
biological system (i.e., the brain) via DBS.

To the best of our knowledge, Safe MetAL is the first
architecture to meta-learn an acquisition function for active
learning embedded within a chance-constrained program for
probabilistically safe control. Further our approach sets a new
state of the art over prior work ([1], [15], [16], [29], [35])
for active learning across two, disparate domains. Our novel,
deep learning architecture, offers a unique ability to learn an
LSTM-based embedding of sample history while utilizing the
power of deep Q-learning to learn a task-specific acquisition
function. Safe MetAL’s is able to optimize both for safety and
expected informativeness by embedding our learned acquisition
function in a chance constrained optimization framework. With
this novel formulation, we demonstrate that Safe MetAL main-
tains a high probability of safety while also maximizing the
expected informativeness based on a learned representation of
sample history.

VIII. LIMITATIONS AND FUTURE WORK

Safe MetAL assumes that the safety region is defined by
an unchanging volume of safety and that uncertainty over our
states is Gaussian. Additonally, Safe MetAL requires data to
meta-learn an acquisition function. However, our results demon-
strate that Safe MetAL enables greater expected informativeness
and safety when sufficient training data is available. The dis-
tribution of scenarios from which we meta-learn over can be
determined either by a domain expert or autonomously by a
fleet of robots. First, a domain expert could posit various failure
modes (e.g., partial wing damage, actuator failure, etc.) and
distributions of cases describing possible dynamics for those
modes (e.g., dynamics for partial wing loss of 25%, 50%, etc.).
These finite set of cases could be artificially expanded through
data augmentation, e.g. adding noise to each mode, similar to
domain randomization in Sim2Real transfer [18]. Alternatively,
a fleet of robots could collect and train on data on all novel
situations experienced by any robot. Finally, we hypothesize that
Safe MetAL’s performance depends on the representativeness
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of the training data, which we will explore further in future
work.

IX. CONCLUSION

In this paper, we demonstrate Safe MetAL a state-of-the art
meta-learning approach for active learning for control. In our
approach we 1) accurately quantify domain specific expected
informativeness, 2) learn from sample history to improve gener-
alizability and 3) include safety constraints to probabilistically
ensure safe sample selection. We demonstrate that our approach
achieves a 41% increase in expected informativeness, a 20%
speedup in computation time and ensures a high degree of safety
across both domains.
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