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Abstract—Learning from demonstration (LfD) techniques seek
to enable users without computer programming experience to
teach robots novel tasks. There are generally two types of
LfD: human- and robot-centric. While human-centric learning
is intuitive, human centric learning suffers from performance
degradation due to covariate shift. Robot-centric approaches,
such as Dataset Aggregation (DAgger), address covariate shift but
can struggle to learn from suboptimal human teachers. To create
a more human-aware version of robot-centric LfD, we present
Mutual Information-driven Meta-learning from Demonstration
(MIND MELD). MIND MELD meta-learns a mapping from
suboptimal and heterogeneous human feedback to optimal labels,
thereby improving the learning signal for robot-centric LfD. The
key to our approach is learning an informative personalized em-
bedding using mutual information maximization via variational
inference. The embedding then informs a mapping from human
provided labels to optimal labels. We evaluate our framework in
a human-subjects experiment, demonstrating that our approach
improves corrective labels provided by human demonstrators.
Our framework outperforms baselines in terms of ability to reach
the goal (p < .001), average distance from the goal (p = .006),
and various subjective ratings (p = .008).

Index Terms—Learning from demonstration, personalization,
meta-learning

I. INTRODUCTION

Learning from Demonstration (LfD) seeks to enable humans
to teach robots new skills via human task demonstrations
without the need for users to have prior experience in computer
programming [2]. In LfD, the robot learns a policy that
maps the state of the world to how the robot should act to
accomplish the human-specified or demonstrated task [36].
Researchers have pursued two principle types of LfD: human-
centric and robot-centric [22]. In human-centric LfD, a human
typically performs the task, and the robot infers from this
demonstration the task specification. An example of human-
centric LfD is Behavioral Cloning (BC), i.e. mimicry [11],
where the robot records the human demonstration of the task
and uses supervised learning to learn a policy mapping states
to actions. However, BC suffers from covariate shift issues
due to a mismatch between the distribution of states given by
the demonstration versus those experienced by the robot when
attempting to accomplish the task [26], [31], [32].
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Robot-centric LfD is an alternative to human-centric LfD
and addresses the problem of covariate shift [32] by instead
learning from a human’s corrective feedback signal at each
time step as the robot executes the task [22]. One example
of robot-centric LfD is Dataset Aggregation (DAgger) [32].
Ross et al. showed that learning from human corrective
actions solves the problem posed by covariate shift [32].
Many robot-centric, as well as human-centric, LfD algorithms
assume the demonstrator is an expert at the task and that
they will provide optimal demonstrations or feedback [29].
When the demonstrator is a Wizard-of-Oz oracle [30] and
provides optimal demonstrations, prior work has shown that
DAgger can learn policies that are more sample efficient and
accurate than human-centric LfD algorithms [32]. However,
these studies may not translate to real-world settings where
non-oracle, heterogeneous human demonstrators provide sub-
optimal demonstrations [1], [4], [22], [42]. Prior work has
shown that humans struggle to provide high quality corrective
actions during robot-centric LfD [39]. Additionally, humans
are heterogeneous: the way humans provide feedback may
differ depending upon the individual’s abilities and prior
experience [28], [35]. Therefore, robot-centric LfD approaches
need to account for the teacher’s suboptimality and hetero-
geneity to learn effective policies. However, prior work fails
to take into account demonstrator suboptimality and human
heterogeneity in robot-centric LfD.

To fill this gap, we aim to harness the potential advan-
tages of robot-centric algorithms (i.e., increased policy per-
formance and sample efficiency) and improve upon robot-
centric algorithms by explicitly learning to account for hetero-
geneity and suboptimality in teaching. We introduce Mutual
Information-driven Meta-learning from Demonstration (MIND
MELD), which uses a Long Short-Term Memory (LSTM)
neural network-based architecture to meta-learn a person-
specific mapping from human-provided, corrective-action la-
bels to idealized labels, which are inferred based upon a
distribution of calibration tasks with known, optimal labels.
Because human feedback is heterogeneous, we propose to use
variational inference to learn a personalized embedding that
encapsulates information about a person’s style of providing
corrective feedback. We then use the personalized embedding
to map each individual’s suboptimal labels to labels that more
closely approximate optimal labels, thereby improving the
performance of robot-centric LfD algorithms. Optimal labels



(i.e., ground truths) are only necessary for a small set of
calibration tasks [14], [17] to learn to improve upon human
labels and are not needed at test time.

In this paper, we conduct an IRB-approved within-subjects
study, comparing the performance of MIND MELD to a robot-
centric baseline, DAgger, and a human-centric baseline, BC.
We evaluate these algorithms based on their ability to learn
the task of driving an autonomous vehicle to a goal without
collisions as well as various subjective metrics. Additionally,
we analyze how the learned personalized embeddings capture
the demonstrator’s style and improve suboptimal labels.

In our work, we contribute the following:

1) We formulate MIND MELD, a novel, personalized LfD
framework for improving upon suboptimal corrective
labels by inferring individual demonstrator styles.

2) We demonstrate that MIND MELD objectively outper-
forms prior work in a human-subjects experiment in its
ability to reach the goal more often than BC (p < .001)
and DAgger (p < .001).

3) We show that users prefer MIND MELD over DAgger
and BC in terms of trust (p < .001), workload (p =
.005), perceived intelligence (p = .008), and likeability
(p = .004).

II. RELATED WORKS

Prior work has explored human-centric LfD for learning
a robot policy for task execution from an expert human
demonstrator [2], [12], [24], [29], [32]. The simplest and most
ubiquitous form of human-centric learning is BC, in which a
robot infers the mapping from states to actions via supervised
learning based on human demonstrations [18], [31]. However,
if the learner deviates from the demonstrated path, covariate
shift occurs due to a mismatch between the states induced by
the demonstrations and those experienced by the robot when
rolling out a policy. Due to this covariate shift, a learner’s
mistake count can compound quadratically with regards to the
time horizon [32].

In response to this problem, Ross et al. introduced Dataset
Aggregation (DAgger), a robot-centric LfD approach that
aggregates a training data set of expert labels queried during
policy rollout [32]. DAgger utilizes the state distribution in-
duced by the current policy to solicit labels from the expert and
employs a gating function to determine the mixture of expert
and learner during each rollout. Ross et al. proved linear-loss,
no-regret guarantees and showed that with high-quality, expert
demonstrations, DAgger outperforms prior work.

However, Laskey et al. [22] showed that robot-centric
learning approaches, such as DAgger, can lead to human mis-
labelling, resulting in poor learner performance. Additionally,
DAgger requires a heavy workload from the demonstrator,
which can result in demonstrator fatigue and poor training
results [21], [23], [27]. Prior work has attempted to reduce
the amount of corrective feedback required of the demon-
strator by DAgger to improve teacher-learner interaction [16],
[21], [25], [42]. He et al. proposed an imitation-learning-by-
coaching algorithm in which the learner must imitate actions

of progressively increasing difficulty [16]. In this approach,
task loss is reduced by demonstrating to the learner preferable
actions. Results have shown that this coaching scheme can
outperform DAgger and achieve a lower regret bound when
the demonstrator is an oracle, but no study has been conducted
demonstrating this method’s advantage with human teachers.

In related work, Kelly et al. proposed to reduce expert
workload while improving upon expert-provided demonstra-
tions through Human Gated DAgger (HG-DAgger), allowing
the expert to decide when to provide feedback via a gating
function [21]. HG-DAgger learns a stationary policy such that
labels are obtained via a policy that stabilizes around expert
trajectories. Spencer et al. expanded on this idea, utilizing
both information about when the expert does and does not
intervene, in the Expert Intervention Learning (EIL) algorithm
[42]. HG-DAgger and EIL both focus on augmenting when the
human should provide feedback during a trajectory, whereas
our approach focuses on how, by improving the feedback
itself. Because our approach is complimentary and orthogonal
to robot-centric LfD approaches such as HG-DAgger and EIL,
these approaches are not suitable benchmarks. Instead, our
approach could be used in conjunction with these and other
related approaches to improve upon human-provided labels.

Knox and Stone developed TAMER, which allows humans
to provide feedback in the form of a scalar reward [5].
TAMER accounts for delayed feedback, but does not account
for heterogeneous demonstrators. Other approaches, such as
T-Rex and D-Rex, use inverse reinforcement learning (IRL)
to improve upon poor human demonstrations by learning a
reward function from a set of ranked demonstrations [6], [7].
Also using IRL, Chen et al. introduced SSRR to learn from
suboptimal demonstrations by characterizing the relationship
between noise and performance [9]. However, there is a lack
of prior work accounting for both the heterogeneity and
suboptimality of humans for robot-centric LfD. Therefore,
there is a need for LfD algorithms that can effectively learn
from the typical, non-expert human demonstrator in a robot-
centric paradigm [29]. Our approach is the first to improve
upon robot-centric learning by inferring demonstrator style via
personalized embeddings to correct for suboptimal demonstra-
tions. We maintain the advantages of robot-centric learning
(i.e., reducing covariate shift) while making robot-centric LfD
more human-aware by accounting for the suboptimality and
heterogeneity of human demonstrators.

III. METHODOLOGY

In the following section, we provide an overview of the
preliminaries of our work and describe our MIND MELD
algorithm for improving robot-centric LfD with suboptimal
human demonstrators. We discuss our network architecture,
personalized embeddings, and the mapping of suboptimal
labels to more effective labels.

A. Preliminaries

The LfD problem can readily be framed as a Markov
Decision Process sans reward function (MDP\R). The MDP\R
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Fig. 1: This figure shows the MIND MELD network architecture. aEp ) represents demonstrator p’s corrective label, at time ¢. The
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and the output, ciip ). The objective is to minimize the mean squared error (MSE) between the predicted difference, &Ep ), and

the true difference, d\”) = a\”

sequence of corrective feedback, a'?
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— o4, of the demonstrator’s corrective feedback and the ground truth label, o;. We pass in the
from time ¢ — At to ¢t + At to the bi-directional LSTM and extract sequential

information to inform the predictions of ground truth label at time ¢.

is defined by the 4-tuple (S,.A,T,~). S represents the set of
states and A the set of actions. T : S x A x &’ — [0,1] is the
transition function that returns the probability of transitioning
to state, s’, from state, s, applying action, a. y weights
the discounting of future rewards. Reinforcement learning
seeks to synthesize a policy, 7 : & — A, mapping states
to actions to maximize the future expected reward. In an
LfD paradigm, a demonstrator provides a set of trajectories,
{(st,a¢),Vt € {1,2,..T}}, from which the agent learns a
policy.
We make the following assumptions in our work.

o In the context of robot-centric learning from demonstra-
tion, humans provide corrective feedback that is subop-
timal (e.g., with respect to an optimal, minimum-jerk,
collision-free trajectory planner).

o These human-specified, heterogeneous, sub-optimal
strategies can be represented by a learned embedding.

o Across different tasks, humans provide predictable and
consistent, albeit suboptimal, corrective feedback.

e We have access to a distribution of calibration tasks from
which we can obtain the optimal, ground truth labels.

Given these assumptions, we learn an individual’s corrective
“style” via a personalized embedding trained over a set of cal-
ibration tasks to represent the human’s suboptimal tendencies.
We then utilize this embedding to condition a meta-learned
mapping from suboptimal corrective labels to ground truth
labels given a set of calibration tasks. Our approach is a type
of meta-learning as we learn an architecture over a distribution
of tasks and participants in order to more effectively learn a
specific LfD task.

B. Architecture

Depicted in Fig. 1 is the architecture of our network,
which consists of three components: 1) the bidirectional
LSTM encoder, £ : A — Z, 2) the prediction subnetwork,
fo: Z x W — R, and 3) the mutual information subnetwork,
¢s: Z xR — Ny . The label we aim to improve upon is aip).
We denote the set of d-dimensional, personalized embeddings
as W, and the set of k-dimensional encodings extracted from
the sequences of corrective feedback as Z C R¥. &, is trained
to extract the encoding, z((fpl Abit+AL) € Z, for the sequence
of corrective labels, ag )
time ¢t — At to t + At.

fo maps the encoding, z((fl Abt4AL)? and personalized em-

bedding, w®) to the difference, dEp ) — 0y — aEp ), between the
ground truth label (obtained via a controller such as MPC
[8] or Stanley [41]) and the individual’s corrective label,
where dgp ) € R*. The subnetwork ge learns a mapping of
the encoding, z((tpl Attt Ay and predicted difference, dﬁ” ) to
a posterior distribution over the demonstrator’s embedding,
w®) ., We initialize w®) based upon the prior, WP ~ N(0,1),
and obtain an estimate of the individual’s learned embedding,
w®), by sampling from the approximate posterior.

At:t+AL) provided by person p from

C. Variational Inference

This work is motivated by the assumption that humans are
not optimal or homogeneous in how they provide feedback,
thus necessitating democratized LfD methods which account
for both heterogeneity and suboptimality. Note that we handle
the fact that individuals’ demonstrations are suboptimal and
heterogeneous separately. We capture information about an



individual’s corrective “style” (i.e., how they are suboptimal)
using a personalized embedding, w(®), for individual p, which
we then use to correct the individual’s suboptimal and hetero-
geneous demonstrations, as described in Eq. 1. In our work, we
seek to maximize the mutual information between the correc-
tive mapping, ci(p ), our learned personalized embedding, w(?),
and the encoding of the demonstrator labels, z((f) Abt+AL)?
such that the uncertainty of our learned embedding decreases,
given informative corrective feedback.

Maximizing mutual information necessitates access to an
intractable posterior distribution, P[w () |23 (p) ~ Atit+ A’ dgp )].
Thus, we train w®) to capture salient 1nf0rmat10n about an
individual’s style by utilizing the variational lower bound,
Li(fo,q4). as derived in Chen et al. [10] and shown in Eq. 1,
where the mutual information between z((f ) Att+AL) (iip ) and
personalized embedding, w?), is I(w®; z(( )At HAt),d(”)).

I(w (@), »(P) A())

Z(t—At:t+AtL) =Hw®) -

4®)
H(w (P)|Z(t At:t+AL)? ")

> Ellog(gs(w® |z aves an, d” D]+ Hw®) = Li(fs.q,) (1)

Our network is trained by combining two loss functions: one
to learn the embedding, w(p), and one to learn the difference,
chf’ ), as shown in Fig. 1. L; minimizes the MSE between the
sampled embedding approximation, «(P), and the personalized
embedding, w(®) (equivalent to maximizing the log-likelihood
of the posterior). Lo minimizes the MSE between the predicted
difference, d\”), and the true difference, d\”) = o, — a!?.
We backpropagate the sum of these losses (Eq. 2) to learn
the embedding during training such that the personalized
embedding reflects the individual’s feedback style. Then, at
test time, we freeze the network parameters, 6, ¢, and ¢’ and
utilize this personalized embedding to inform the mapping of
demonstrator feedback.

Lg,p,¢',w) = L1<e¢¢> +)‘L2<e¢> 2)
Li,, ., = KHZIIA“’) wi”| 3)
Lz, ) = Hd;’) —d| @)

IV. SYNTHETIC EXPERIMENT AND PILOT STUDY

We conduct a synthetic study [37] to demonstrate MIND
MELD'’s ability to correct for suboptimal, heterogeneous feed-
back. In our synthetic experiment, we create artificial Wizard-
of-Oz rollouts, ground truths, and human demonstrators. We
demonstrate that the embeddings learn a meaningful represen-
tation of demonstrator stylistic tendencies (Fig. 2).

We additionally conducted an IRB approved pilot study
[37] to test MIND MELD?’s ability to learn meaningful embed-
dings and improve upon suboptimal corrective feedback. After
recruiting 34 participants, we found that MIND MELD was
able to improve corrective feedback and learn embeddings that
significantly correlate with demonstrators’ stylistic tendencies,

e., the way in which they deviate from optimal (p < .001).
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Fig. 2: This figure shows learned embeddings from our syn-
thetic experiment. Diameter represents individuals’ tendency
to over-/under-correct, while color represents the tendency to
provide anticipatory or delayed feedback.

Algorithm 1 MIND MELD Procedure

1: For M training participants, collect calibration task data

2: Perform gradient descent on 6, ¢, ¢’,w until convergence (Eq.
2)

. Freeze architecture parameters, ¢, ¢’ and 6

: for p in test participants do

Initialize w® 5 Z?io w®

Collect calibration task data from p

Perform gradient descent on w until convergence (Eq. 4)

Obtain initial demonstration from p.

Present LfD algorithm conditions {MIND MELD, BC, and

DAgger} in randomized order.

10:  for c in conditions do

ORI N AW

11: Train learner via condition, ¢, for N demonstrations.
12: end for
13: end for

Based on results of our pilot study, we redesigned our study
to better capture the stylistic tendencies of demonstrators and
expanded upon our participant pool.

V. HUMAN-SUBJECTS EXPERIMENT

We evaluate our architecture via a human-subjects exper-
iment with human demonstrators. Through this experiment,
we demonstrate MIND MELD’s ability to outperform prior
LfD work by improving upon a user’s suboptimal corrective
feedback. Our human-subjects experiment consists of a train-
ing phase and a testing phase as discussed below. The steps
comprising our study are illustrated in Algorithm 1. Our study
has been approved by Georgia Tech’s IRB.

Calibration Phase - In the calibration phase, we recruit
participants to complete a set of calibration tasks to meta-
learn the MIND MELD parameters, 6, ¢, and ¢’ and per-
sonalized embeddings, w(®). Additionally, participants in this
phase complete the pre-study questionnaires to capture prior
experience and other demographic information.

Testing Phase - For the testing phase, we recruit a set
of testing participants for a within-subjects study. These par-
ticipants first complete the calibration tasks to learn their
personalized embedding via Eq. 2. The participants then train



Fig. 3: The simulator and steering wheel in our human-subjects
experiment are on the left and the test task is on the right.

an LfD agent via the three learning algorithms, MIND MELD,
BC, and DAgger, the order of which is randomized and
counterbalanced to mitigate confounding factors (e.g., fatigue,
learning effects, etc.). The test task differs from the calibration
tasks but is similar and falls within the same distribution
(depictions of the calibrations tasks are in the Appendix). The
participants in the testing phase complete both the pre-study
and post-study questionnaires.

A. Driving Simulator Domain

We evaluate our approach with a human-subjects experiment
in a virtual driving environment, a common domain in prior
LfD, HRI, and robotics research [23], [32]. We choose to use
the AirSim [40] driving simulator, an Unreal Engine-based
high-fidelity physics simulator. Individuals in this experiment
interact with the virtual driving environment using an Xbox
steering wheel, shown in Fig. 3. We use a geometric Unreal
environment where the LfD objective is to teach the agent
to drive to a large, orange ball while avoiding all obstacles.
The learning algorithms do not have access to the location of
obstacles or the orange ball. We constrain the action space to
be the position of the wheel, ranging from -540 degrees to
540 degrees. We define the state space to be composed of an
image captured by a camera positioned at the front of the car
as well as the car’s acceleration, velocity, and position.

B. Calibration Tasks and Ground Truths

We create a series of sixteen Wizard-of-Oz [30] rollouts
which are representative of successful and unsuccessful tra-
jectories and allow us to capture the feedback styles of
participants. All participants complete these tasks so MIND
MELD can infer their personalized embeddings, w.

To determine ground truth optimal states for each point
along the trajectories of the calibration tasks, we employ RRT*
[20] (see Appendix for an example). We then apply an MPC
controller along the path to determine the ground truth label
at each time step.

C. Conditions

The participants first complete a set of calibration tasks
which are used to learn their personalized embeddings for
MIND MELD. Then, participants provide an initial demon-
stration from which all three agents learn an initial policy, 7.
All agents are trained for /N demonstrations. Each participant
experiences the following conditions in a random order.

Supervised Behavioral Cloning (BC) - Participants in this
condition teach the agent via BC. To mirror our other con-
ditions, the agent’s policy is rolled out with each iteration of
training so that the participant can observe the agent’s behavior
before providing the next demonstration.

DAgger - Participants in this condition teach the agent via
vanilla DAgger [32] implemented based on prior work [22],
[33]. The agent rolls out policy, 7, and participants provide
corrective feedback. The corrective labels are aggregated with
the initial demonstration and corrective feedback from trials 1
to n — 1 and the agent is retrained to yield policy, m,41.

MIND MELD (Ours) - For each demonstration, n, partici-
pants provide corrective feedback to the agent. This corrective
feedback is mapped to predicted ground truth labels via MIND
MELD. The mapped labels are aggregated with the initial
demonstration and mapped labels from trials 1 to n — 1 and
the agent is retrained to yield policy, 1.

D. Metrics

Below we discuss the metrics by which we evaluate MIND
MELD and the learned embeddings. Both training and testing
participants complete the pre-study questionnaires to deter-
mine if demographic information correlates with the learned
embeddings. Only testing participants complete the post-study
questionnaires. The surveys detailed below comply with the
design guidelines outlined in Schrum et al. [38] and are
validated from prior work when possible. The full text of the
surveys and additional surveys that are not relevant to our
results can be found in the Appendix. We report Cronbach’s
alpha («) for each scale.

Objective Metrics

Stylistic tendencies - We analyzed participants’ subopti-
mality by calculating their stylistic tendencies via dynamic
time warping (DTW) [34] between the participant labels, a,
and ground truths, o, along two-dimensions: 1) over-/under-
correcting (i.e., turning the wheel too far or not enough) and
2) providing delayed/anticipatory feedback. Additional details
on our calculations can be found in [37].

Goal Consistency - We measure the total number of times
the agent reaches the goal, the number of demonstrations
required for the agent to reach the goal, and the probability
of each agent reaching the goal after each demonstration.

Distance - For each policy rollout of the agent, we measure
the final distance between the agent and the goal.

Pre-Study Questionnaires

Prior Experience - We collect information about a par-
ticipant’s familiarity and experience playing video games
(Cronbach’s o = .93) and driving a physical car (o = .93) via
two Likert scales to determine if prior experience correlates
with the learned embeddings. Each Likert scale has eight items
and a 5-point response format (strongly disagree to strongly
agree). Since this survey on prior experience is ad hoc, the
Appendix includes a factor analysis to validate the scales.
Post-Study Questionnaires

Trust (a« = .96) - We measure the participant’s trust of the
agent after each trial and for each condition [19]. In our results,
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(d) Probability of reaching the goal four times.

Fig. 4: This figure shows that MIND MELD has a statistically significantly higher probability of reaching the goal once (Fig
4a), twice (Fig 4b), three times (Fig 4c), and four times (Fig 4d) throughout the duration of the study compared to the baselines.

we analyze the final trust survey from each condition due to
the statistical testing considerations detailed in the Appendix.

Workload - We measure the workload after each condition
via the NASA Task Load Index (TLX) [15].

Likeability (a« = .95) - We measure likeability after each
condition via the Godspeed likeability subscale [3].

Intelligence (a = .95) - We also measure the perceived in-
telligence of the agent after each condition via the intelligence
subscale of Godspeed [3].

E. Procedure

An overview of our procedure for learning the MIND
MELD architecture and validating MIND MELD’s ability to
outperform our baselines is detailed in Alg. 1. We first recruit
76 training participants by word of mouth and mailing lists.
The training participants provide corrective feedback for each
pre-recorded rollout which we then use to train MIND MELD
and learn the parameters of MIND MELD’s three subnetworks,
6, ¢, and ¢’ as well as learn the personalized embedding, w(p),
via Eq. 2-4. All training participants additionally answer the
pre-study questionnaires.

We then recruited 42 different testing participants who
experience each of the conditions discussed in Section V-C. To
learn their personalized embeddings, all participants complete
the calibration tasks. We then present each of the conditions
discussed in Section V-C in a randomized order. All testing
participants complete the pre- and post-study questionnaires.

To ensure that participants are familiar with the system
before providing corrective feedback, all participants drive
around in the simulator for several minutes. Additionally,
participants practice providing corrective feedback in the first

four calibration tasks which are not used in the training of
MIND MELD so as to reduce novelty effects.

F. Hypotheses

Hypothesis 1 - MIND MELD will improve the corrective
labels provided by the participants in the calibration tasks. We
hypothesize that MIND MELD will learn to map suboptimal
labels to labels that more closely approximate optimal labels
by learning an embedding of stylistic tendencies of individuals.

Hypothesis 2 - The learned embeddings will correlate with
participants’ stylistic tendencies and prior experience. Based
on our pilot study [37] illustrating that the learned embeddings
correlated with stylistic tendencies, we predict that we will
be able to reproduce these results with a larger participant
pool. We also predict that the embeddings will correlate with
participants’ experience with video games and driving.

Hypothesis 3 - MIND MELD will outperform DAgger and
BC in terms of ability to reach goal. We hypothesize that, due
to MIND MELD’s ability to correct for suboptimal feedback,
MIND MELD will be more likely to reach the goal and achieve
a shorter average distance from the goal.

Hypothesis 4 - The amount by which a participant deviates
from the optimal feedback style will correlate with MIND
MELD’s ability to outperform DAgger. We hypothesize that
participants who provide feedback that differs most from
optimal (i.e., greatly over-correct) will produce poor results
for DAgger. Because MIND MELD can correct for this sub-
optimality, the advantage of our MIND MELD algorithm over
DAgger will increase with increasingly suboptimal feedback.

Hypothesis 5 - We hypothesize that MIND MELD will
achieve higher ratings on our subjective metrics compared to
baselines. Because MIND MELD corrects for suboptimality,



we hypothesize that MIND MELD will be rated higher in
terms of perceived intelligence, likeability, workload, and trust.

VI. RESULTS

We recruited 76 training participants (M = 22.8; SD =
5.5; 31.2% Female), each of whom completed the calibration
tasks and filled out the pre-study questionnaires. We then
recruited 42 testing participants (M = 22.1; SD = 2.72;
40% Female), each of whom completed the calibration tasks,
all questionnaires, and experienced the three conditions. In our
following analysis, we first determine if the data complies with
parametric test assumptions before employing a parametric
test. Additionally, we test each model for ordering effects
and confounding factors from our covariates and find none.
Specific details for all parametric testing assumptions and
covariates can be found in the Appendix.

We first test if our findings support Hypothesis 1 which
predicts that MIND MELD will improve upon the corrective
labels provided in the calibration tasks. We find a 55% im-
provement in the labels for our training participants and 37.6%
improvement for our testing participants. In the Appendix,
we provide graphical depictions of MIND MELD’s ability to
correct for suboptimal trajectories.
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Fig. 5: This figure shows the average distance and standard
deviation from the goal for each algorithm after each iteration.
At each iteration, the agent rolls out the current policy and the
participant provides a demonstration.

To test Hypothesis 2, we conduct a correlation analysis be-
tween the learned embeddings and the results of our dynamic
time warping describing participants’ over-/under-correcting
and delayed/anticipatory tendencies. We find support for the
results in our pilot study and find that the learned embed-
dings significantly correlate with participants’ tendency to
over-/under-correct (r(116) = —.47,p < .001) and provide
anticipatory/delayed feedback (r(116) = .49,p < .001).
To further investigate Hypothesis 2 and determine if prior
experience correlates with the learned embeddings, we conduct
a correlation analysis between experience with driving and
experience with video games. We find that experience with
video games significantly correlates with the learned embed-
ding (p = .19, p = .038).

To investigate Hypothesis 3, we next analyze the ability
of each agent to reach the goal, in terms of both probability
and frequency, over the course of the study. To determine the

MELD-DAgger | MELD-BC | DAgger-BC
Workload ;)8:1 (30%',) ;71(100%18) ;)22 (8279)
Likeability ;1:(;3321 11,’4:(,'(2)3)1 ; 1:(:?
Intelligence 11)2:((3)3)8 11,7< ((3)2))1 p5 3:( gé)
R
Disnce | 3 e | TR S20EY

TABLE I: We report the means (standard deviations) of the
difference between the agents and associated p-values for
objective and subjective metrics.

probability of reaching the goal at each iteration, we conduct
a survival analysis, a statistical technique commonly used in
medical research to assess the expected time until an event
takes place [13]. Survival analysis allows us to analyze data for
which an event may never occur. For example, an agent may
never reach the orange ball during the study, yet we can still
include this data in our survival analysis as “censored” data. In
our study, time corresponds to the number of demonstrations
that the agent has experienced. An event occurs when the agent
reaches the goal the specified number of times.

Fig. 4 shows the Kaplan-Meier curves for reaching the goal
once, twice, three times, and four times. We find that MIND
MELD is statistically significantly more likely to reach the
goal once (log rank p < .001), twice (log rank p < .001), three
times (log rank p < .001), and four times (log rank p < .001)
throughout the course of the study compared to DAgger and
BC. We find that MIND MELD has a 100% chance of reaching
the goal once after the seventh iteration whereas the baselines
never achieve 100% probability of reaching the goal even once.
Likewise, we find that MIND MELD has a > 80% chance of
reaching the goal three times after the ninth iteration whereas
the baselines have a < 50% chance. This result supports
Hypothesis 3 and shows MIND MELD learns a better policy
in terms of probability of reaching the goal.

We additionally apply a Poisson regression with a Tukey
post hoc to determine if there is a statistically significant
difference between the total number of times that each agent
reaches the goal throughout the study. We find that MIND
MELD reached the goal 2.1x more than DAgger (p < .001)
and 2.6x more than BC (p < .001).

Next, we analyze the average distance from the goal across
iterations for each algorithm. We conduct a repeated measures
ANOVA with a Tukey post hoc comparing the distance to
the goal for each condition. As shown in Table I, we find
that MIND MELD achieved a statistically significantly lower
average distance from the goal (M = 20.4,SD = 5.58)
compared to DAgger (M = 24.8,5SD = 5.92,p < .001) and
BC (M = 28.2,SD = 4.86,p < .001). Fig. 5 shows the
average distance to the goal for each trial and condition. Note
that a trial ends after the agent either reaches the orange ball
or crashes into an obstacle.



To determine if our findings support Hypothesis 4, we con-
duct a correlation analysis between the participants’ stylistic
tendencies and the average difference between MIND MELD
and DAgger. We find that participants’ delayed/anticipatory
tendencies significantly correlate with MIND MELD’s advan-
tage over DAgger (r(40) = .36, p = .017), as shown in Fig.
6.
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Fig. 6: This figure shows a plot of participants’ tendency to
provide delayed/anticipatory feedback vs. the difference be-
tween the average performance of MIND MELD and DAgger.

We lastly investigate our findings in the context of Hypothe-
sis 5 to determine if MIND MELD is rated subjectively higher
by participants. We conducted a repeated measures ANOVA
with a Tukey post hoc or Friedman’s test (see omnibus
statistics in the Appendix). As shown in Table I, MIND MELD
is rated statistically significantly higher compared to both
DAgger and BC for all subjective metrics. These findings
support Hypothesis 5.

VII. DISCUSSION

In our analysis, we find support for Hypotheses 1-5,
illustrating that MIND MELD can learn stylistic tendencies of
suboptimal and heterogeneous demonstrators, map the subop-
timal feedback to better feedback, and, as a result, outperform
prior work in both robot-centric and human-centric LfD. We
find that MIND MELD is able to learn various participant
styles, such as participants’ tendency to over-/under-correct
(p < .001) and provide delayed and anticipatory feedback
(p < .001), suggesting that MIND MELD can provide positive
results with a diverse user pool. For more discussion on
stylistic tendencies, please refer to the Appendix.

Because MIND MELD is able to learn heterogeneous ten-
dencies and utilize this information to correct for suboptimal
behavior, we find that MIND MELD outperforms prior work
in terms of its ability to reach the goal in an LfD task. MIND
MELD achieves both a higher probability of reaching the
goal and a lower average distance from the goal compared
to both baselines, DAgger (p < .001) and BC (p < .001).
Additionally, we observe that the more delayed a participant is
at providing feedback, the better MIND MELD performs over
DAgger (p = .017). We find that, for participants who provide
less suboptimal feedback, MIND MELD and DAgger exhibit
more similar performance because there is less of a need to
correct a participants’ feedback. When a participant’s behavior

deviates more from the optimal, DAgger performs worse,
whereas MIND MELD is able to correct for the suboptimality.

Not only do we see improved performance in terms of
objective metrics, we also find that MIND MELD outperforms
both DAgger and BC in terms of our subjective metrics.
Participants rate MIND MELD to be more likeable (p = .004),
intelligent (p = .008), and trustworthy (p = .001) compared
to DAgger. Additionally, we find the participants’ perceived
workload is rated as lower for MIND MELD (p = .005).
This is an interesting finding considering that for both MIND
MELD and DAgger, participants are tasked with providing
corrective feedback to the agent. With respect to performance
and human usability, MIND MELD achieves the best of both
worlds. MIND MELD improves upon the performance of
robot-centric algorithms, while being easy to teach, likeable,
intelligent, and trustworthy.

VIII. LIMITATIONS/FUTURE WORK

Due, in part, to the recruiting difficulties imposed by the
COVID-19 pandemic, our sample population consisted pri-
marily of students with a mean age of 22.6. In the future,
we plan to conduct this experiment with a more diverse set
of participants. We also note that MIND MELD requires
training participants to meta-learn the model parameters and
a set of calibration tasks with ground-truth labels to learn the
personalized embeddings. However, our results demonstrate
that MIND MELD improves the quality of the corrective
feedback by 37.6% and LfD outcomes (p < .001), making
this additional step worthwhile.

Additionally, MIND MELD makes several assumptions,
listed in Section III, about the way in which individuals
provide corrective feedback. Yet, the success of our algorithm
suggests that these assumptions appear to be sufficiently met
for our experimental setup. For this study, we assume that a
person’s feedback style will remain constant; however, we do
expect that, over a longer period of interaction, a person’s style
of feedback may change and adapt. In future work, we plan to
investigate how to update our framework to account for and
learn changing styles during longitudinal LfD.

Lastly, we aim to investigate if we can replicate the benefits
of MIND MELD in other domains. We plan to implement
MIND MELD on a robot arm domain, which may produce
different behavior and stylistic tendencies amongst participants
due to more degrees of freedom and a more complex user
interface.

IX. CONCLUSION

We introduce MIND MELD, a novel LfD framework that
learns personalized embeddings from heterogeneous users and
improves upon suboptimal human feedback for robot-centric
LfD algorithms. Through a human-subjects experiment, we
showed that MIND MELD outperforms a human-centric base-
line, BC, and a robot-centric baseline, DAgger, with regards
to multiple measures of algorithm performance. Furthermore,
users found MIND MELD more intelligent, likeable, trustwor-
thy, and easier to teach than BC and DAgger.
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