
When Your Robot Breaks: Active Learning During
Plant Failure

Mariah L. Schrum1 and Matthew C. Gombolay1

Abstract—Detecting and adapting to catastrophic failures in
robotic systems requires a robot to learn its new dynamics
quickly and safely to best accomplish its goals. To address this
challenging problem, we propose probabilistically-safe, online
learning techniques to infer the altered dynamics of a robot at
the moment a failure (e.g., physical damage) occurs. We combine
model predictive control and active learning within a chance-
constrained optimization framework to safely and efficiently
learn the new plant model of the robot. We leverage a neural net-
work for function approximation in learning the latent dynamics
of the robot under failure conditions. Our framework generalizes
to various damage conditions while being computationally light-
weight to advance real-time deployment. We empirically validate
within a virtual environment that we can regain control of a
severely damaged aircraft in seconds and require only 0.1 seconds
to find safe, information-rich trajectories, outperforming state-
of-the-art approaches.

Index Terms—Aerial Systems: Mechanics and Control, Au-
tonomous Agents, Deep Learning in Robotics and Automation)

I. INTRODUCTION

AS robots increasingly become an integral part of our daily

lives, our reliance on them grows accordingly. However,

robots are susceptible to failure in the form of unexpected

damage or routine wear and tear. Even if a robot fails, the

robot should be able to adapt to its new dynamics so that

it can continue to function to mitigate the need for costly

repairs or dangerous malfunctions. For example, the motor of

a bipedal robot may break mid-step, a tire may blow out on

an autonomous car, or an actuator may fail on a UAV. In such

situations, there is a dual-need to try to maintain control given

the robot’s current understanding of its dynamics while also

seeking out additional information to refine its model. These

needs can be contradictory if seeking out information results

in a terminal condition (e.g., a bipedal robot crashing to the

ground). However, these needs can be complementary when

“safe” actions can be taken to gain new information about

plant dynamics to better follow a desired trajectory.

The bounded rationality hypothesis describes how humans

handle this cognitive dilemma of greedily operating under
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a known model of the world versus seeking out additional

information specifically to refine this model [1]. Bounded

rationality refers to the theory that rationality in human de-

cision making is limited by the tractability of the problem,

available time, and cognitive resources. When faced with

these limitations, humans trade off between optimality of the

solution and expenditure of resources, between information

gain and executing actions efficiently. Robots, likewise limited

by their computational resources, physical limitations under

a failure condition, and time constraints, must make similar

compromises. Thus, when a robot experiences failure, it must

use its resources to learn the nature of the failure efficiently to

compensate in a timely fashion. Therefore, some knowledge

of the full extent of the failure may need to be sacrificed to

expedite reaching the goal. We model this failure-recovery

problem as one in which the robot should focus on safely

learning only the relevant aspects of its dynamics to efficiently

accomplish the task at hand.

Prior work has sought to address safely learning a damage

model [2], [3]. Bongard et al. [2] and Cully et al. [3]

demonstrate active learning methods to determine the true

model of a damaged robot. However, these approaches are

only effective when computational time is not a limiting factor.

For example in [3], the robot took 66 seconds to learn how

to operate after damage. This is far too slow in the case of

an aircraft or other time constrained systems. To the best

of our knowledge, no current architecture accounts for both

a continuous distribution of damage and demonstrates the

computational speed necessary to regain control of an unstable

system, e.g., a damaged aircraft. While some approached have

modeled failure dynamics from first principles, e.g., [4], [5],

these approaches are non-adaptive and restricted to a narrow

set of point cases. For example, [5] only considers the case

of propulsion control for vertical tail damage and in [4]

the parameters of the controller are designed based on prior

knowledge of the damage. We move beyond the limitations

of these prior works by developing active model learning

techniques to safely acquire information about the altered plant

dynamics to recover from failure.

In this paper, we contribute a novel chance-constrained,

active learning, and model-based optimization algorithm to

enable robots to efficiently and safely learn their new dynamics

and recover from failure. Our bounded rationality framework

trades off the risks of acquiring task-relevant information about

the robot’s failure dynamics with maximizing the probability

that the robot can safely continue its mission. The active

learning component of our algorithm mimics a human’s need

to seek additional knowledge when failure occurs. The safety
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framework counterbalances acquisition of new knowledge by

optimizing for the goal under the current assumptions about

the world. We contribute a novel acquisition function along

with a powerful architecture for learning and controlling a

damaged robot in real time. We empirically validate within a

virtual environment that we can regain control of a severely

damaged aircraft in seconds and require only 0.1 seconds to

find safe, information-rich trajectories, outperforming state-of-

the-art methods.

II. RELATED WORKS

We draw upon research in Model Predictive Control (MPC),

Active Learning, and recovery from failure to create a novel

architecture allowing a robot to safely recover in real time

from a large distribution of damage scenarios.

MPC utilizes a model of the plant to make predictions about

the plant’s future behaviors and approximate the optimal con-

trol based on these predictions [6], [7]. Recent work has shown

the potential for MPC to be used in conjunction with online

learning techniques. [8] presents an online learning approach

to designing model predictive controllers. This framework

utilizes online learning techniques to learn the parameters that

minimize the MPC objective. The authors demonstrate their

algorithm’s capabilities on a driving task. [9] proposes using

neural networks as dynamic models in an MPC scheme. A

sampling-based, information theoretic algorithm is proposed

to optimize the MPC cost function.

Active Learning attempts to address the problem that train-

ing data is often expensive to obtain and label. Knowledge

about which training inputs provide the most information to

the algorithm, if their labels are known, is often highly useful.

Active Learning has been studied in the context of supervised

learning and classification [10], [11] and regression [12], [13].

Several previous approaches have employed active learning for

model learning. [2] demonstrates an active learning method to

learn a damage model by generating candidate models and

using active learning to select the most likely model. [3]

utilizes active learning and a Gaussian process model to learn

a damage model.

Detection of and recovery from failure has been studied

extensively in aircraft [14]. [4] proposed linear equations

of motion for an aircraft suffering from wing damage and

actuator damage and implements a model reference adaptive

controller to compensate for these failures. The researchers

demonstrated they could accurately track a reference. [5]

proposed a propulsion-only controller using H-infinity loop

transfer recovery to control a plane that has suffered loss of

hydraulic function. The authors demonstrated the validity of

using an H-infinity controller in several damage cases. While

effective in certain situations, these approaches often rely on

prior knowledge of the damage and do not generalize well to

a large space of possible damage conditions.

III. MOTIVATING APPLICATION: AVIATION

We motivate the need for robots to operate under failure

in the problem of aircraft recovery from damage. Aircraft

are susceptible to a range of failure scenarios, which are

Fig. 1: This figure depicts our objective to take an action

to acquire information while having a high probability of

returning to the safety envelope.

difficult to predict and model, and have tight time constraints

for collecting data. For example, 260 lives were lost when

the rudder of American Airlines Flight 587 snapped off and

the pilot could not recover control [15]. In 2005, the wing of

Chalk’s Ocean Airways Flight 101 broke off due to structural

weakness resulting in the death of all passengers [16].

Our objective is two-fold: 1) given a safe aircraft configu-

ration envelope, take actions that have a high probability (e.g.,

p > 1 − ε) that the aircraft is able to return to a safe flight

envelope and 2) maximize information gain along the aircraft’s

trajectory out of the envelope.
�U(t:T )∗ = argmax

�U(t:T )∈�U(t:T )

I(�U(t:T )) + λPr
{
‖�xt+T − �xr‖1 ≤ r

}
(1)

The trade off between safe flight and information gain is

described in Eq. 1. Here, I(�u) is a measure of the amount of

information gained when taking action �u. λ is a parameter that

can be adjusted depending on the desired trade off between

learning and the probability of remaining in a safe region.

�xr is the safe reference trajectory and r is the radius of the

cylinder of safety in which the robot can explore. This safety

cylinder defines the configurations that are safe for the robot to

be in. The probability that the robot can return to the cylinder

of safety after taking action u(t) via action �u(t+T ) is to be

maximized in light of the desire to also maximize information

gained about the robot’s dynamics along the trajectory from

[t, t+T ). U is the set of possible actions. This formulation, as

defined in Eq. 1, ensures that maximal information is gained

in each time step while seeking a high probability that the

aircraft will return to the safe cylinder. For convenience, we

define �U (t:T ) =
[[
�u(t)

]ᵀ
, . . . ,

[
�u(t+T )

]ᵀ]ᵀ
and �U (t:T )

as the

set of such action trajectories. A visualization of our objective

is shown in Fig. 1 for the case of T = 2.

IV. ALGORITHMIC OVERVIEW

We present our closed-loop learning mechanism below. Be-

fore damage occurs, the robot follows a MPC policy, assuming

a nominal plant model. At each time step t, given action

u(t), we monitor the predicted plant output �x(t+1) provided

by the nominal plant model and compare it to the actual

measurement of the system. If the error between the predicted

measurement and the true measurement is above a threshold,

we assume a mismatch between our nominal plant model and

the true dynamics of the system, meaning damage may have
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occurred. The goal is now to learn a model that represents

the change between the nominal dynamics and the damage

dynamics. The decision to learn the change in the dynamics

was inspired by the previous work of [17], [18] which showed

that learning model displacements is more effective than re-

learning a model from scratch.

Once the mismatch has been detected, the robot explores

to learn more about the nature of the damage by collecting

a set of training examples consisting of u(t), x(t), and x(t+1)

(Line 2). We train a single-layer perceptron and utilize the

acquisition functions discussed below to determine the next

action to take that maximizes our active learning metric (Lines

4-5). The action must also satisfy the condition that it is “safe”.

This means that with probability 1 − ε, the robot will be

able to return to a safe state. We continue taking safe actions

determined via optimization of the active learning acquisition

function to improve upon the preliminary damage model as

quickly as possible. Once our confidence in the model reaches

a satisfactory level, we update the plant model utilized by our

MPC (Line 7-8). We continue refining the model over time as

new data is acquired. Confidence is a function of the active

learning metric.

Algorithm 1 Overview of our safe learning framework.

1: while true do
2: if error detected then
3: �ui...N , �xi...N ← sensors
4: while error above threshold do
5: u∗ = argmaxu∈U I + λPr

{
‖�xt+T − �xr‖1 ≤ r

}
6: update f(xi...N , ui...N )

7: end while
8: else
9: MPC Plant Model ← f

10: u∗ ← MPC policy

11: end if
12: end while

In summary, if damage has been detected, the robot follows

a policy provided by the bounded rationality framework, safely

exploring the environment to efficiently learn the updated

model. Once the model has been learned, the robot follows

a nominal MPC policy, utilizing the updated plant model.

In the next section, we present our novel optimization ap-

proach to probabilistically-safe active learning to adapt to

failure in robotic systems (Sec. V). Finally, we incorporate

neural network function approximation (Sec. V-A) within our

mathematical optimization and lightweight, high-quality active

learning acquisition functions (Sec. V-B).

V. BOUNDED RATIONALITY FRAMEWORK

We formulate the problem of bounded-rationality control

of robots during failure as a probabilistic, mixed integer

linear program, as shown in Eq. 2-4, which is solved using

a commercial solver employing a branch and bound method.

We adopt the same definition from Eq. 1 in which the robot

trades off the information it could gain to improve the system’s

controllability while also trying to achieve a high-probability

of safe-flight by staying within a specified safety envelope. Our

objective function is defined in Eq. 2 in which we optimize

a finite-horizon trajectory over t′ ∈ {t, t + 1, . . . , t + T} to

maximize a trade off between our information gain, I(�u), and

our safety goal, g(�u).

Information gain, I(�uk), is formulated (Eq. 3) as the inverse

of the similarity between candidate data and previous training

examples, where N is the number of stored data points

included in our analysis. Our novel acquisition function is

presented in comparison to state-of-the-art functions in V-B.

Our safety objective, g(�u), is defined in Eq. 4. The probability

of safety is a conjunction of each dimensions, d, of safety

envelope, �r, with a time-varying center at xr
t+T,d = h(d, t+T ).

Our dynamics are given by �x(k+1) = f(�x(k), �u(k)) and are not

necessarily linear.

�U(t:T )∗ = argmax
�U(t:T )∈�U(t:T )

t+T∑
k=t

I(�u(k)) + λg(�u(t+T )) (2)

I(�uk) =
N∑
i=1

∥∥∥u(k)
d − u

(i)
d

∥∥∥
1
+ β

∥∥∥f (
�x(k), �u(k)

)
− x

(i)
d

∥∥∥
1

(3)

g(�u(t+T )) = Pr
{
∧D
d=1

(∥∥∥x(t+T )
d − xr

d

∥∥∥
1
< rd

)}
(4)

This mathematical program is a linear-objective, nonlinearly-

constrained optimization problem. In particular, the absolute

values in I(u) from Eq. 3 and inside the probability in Eq. 4,

both impart piece-wise linearities and the d−conjunction of

envelope-satisfaction events introduces a d−degree polyno-

mial form. Unfortunately, modern solvers are not readily able

to handle the non-convexities introduced by these constraints.

To gain computational tractability, we derive a novel lin-

earization that affords sub-second optimization of the trajec-

tory as shown in Eq. 5-7. This formulation is able to accom-

plish sub-second optimization while maintaining information-

rich, probabilistically-safe trajectories, which we empirically

demonstrate in Sec. VI-B. Our first step is to transform

each piece-wise term in our acquisition function into a set

of integer, linear constraints, as shown in Eq. 5-9, where

M is a large positive number, z
(k,i)
d , ζ

(k,i)
d ∈ [0,∞), and

π
(k,i)
d , ν

(k,i)
d ∈ {0, 1}. This “big M” method [19], [20] in

Eq. 6-7 makes one of the two inequalities mute when the

integer variable in the corresponding equation takes on the

value of zero. While we introduce O(N2D) integer variables,

Sec. VI-B shows we solve this problem in < 1 second.

I(�u(k)) =

N∑
i=1

D∑
d=1

z
(k,i)
d + βζ

(k,i)
d , ∀k (5)

ζ
(k,i)
d ≤ x

(k+1)
d − x

(i)
d +M

(
1− π

(k,i)
d

)
,∀i, j, k (6)

ζ
(k,i)
d ≤ x

(i)
d − x

(k+1)
d +Mπ

(k,i)
d , ∀i, j, k (7)

z
(k,i)
d ≤ u

(k)
d − u

(i)
d +M

(
1− ν

(k,i)
d

)
, ∀i, j, k (8)

z
(k,i)
d ≤ u

(i)
d − u

(k)
d +Mν

(k,i)
d , ∀i, j, k (9)

The next step is to linearize Eq. 4. First, assume the

dynamics are piecewise-linear (e.g., as one would find in

a neural network function approximator with a mixture of

rectified linear units (ReLU) and linear activation functions).

Second, we assume our model error comes from a Gaussian

distribution with a known mean and variance. We leave for
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future work reasoning about the model’s meta uncertainty (i.e.,

error in the estimates for the mean and variance).

For simplicity but without loss of generality, we consider a

derivation of our dynamics for a two-step horizon (i.e., T = 2)

and a neural network with linear activations for approximating

the plant dynamics. Under these conditions, we would have

Eq. 10 from which we wish to enforce constraint Eq. 11. ∧D
d=1

is the logical conjunction of associated predicates indexed by

d. In our context, Pr
{
∧D
d=1

}
is the probability of all events

indexed by d occurring as true. In the following sections ‖x‖
refers to the L-1 norm and |x| refers to the absolute value of

x.

�x(t+2) = (A2 + 2A+ I)�x(t) + (AB +B)�u(t) +B�u(t+1) (10)

g(�u(t+2)) = Pr
{
∧D
d=1

(∥∥∥x(t+2)
d − xr

d

∥∥∥
1
< rd

)}
(11)

Under a Gaussian assumption of the dynamics, as captured

by matrices A and B in Eq. 10, we can then re-write the equa-

tions directly capturing this probability, as shown in Eq. 12

with g(�u(t+2)) = 1−εd. Here, Ā and B̄ are the point estimates

of the dynamics as predicted by the function approximator

and ād and b̄d are rows of the associated matrices. σ is the

matrix of the associated standard deviations of the weights. Φ
is the cumulative distribution function (CDF) for the normal

distribution. Indices d and j indicate rows and columns of

the associated matrices, 1 − εd is the probability level, and

Δ
(t:T )
d = xr

d − (ā2d + 2ād + 1)x
(t)
d .

∥∥∥Φ−1(1− εd)

√∑
j

σ2
d,jx

(t)2

j +
∑
j

σ
2

d,jU
(t:T )2

j

+
[
¯abd + b̄d b̄d

]
�U(t:T )2 −Δ

(t:2)
d

∥∥∥
1
< rd (12)

The challenge lies in that the square root of the sum

of squares is nonlinear and that the CDF of the normal

distribution lacks an analytical inverse. For the sum of squares,

we make the conservative assumption that 0 ≤
√∑

j σ
2
jx

2
j ≤∑

j σj |xj |. For the CDF, we adopt a “probability-selector

variable,” δεp,d , which is 0 when describing the probability of

satisfying the constraint for dimension d with probability p and

1 when the constraint is ignored, which allows us to replace

the CDF call with a constant value for p. These augmentations

yield g(�ut+T ) = (1 − δp,d)(1 − εp) described by Eq. 13-

15, where E is the set of “probability levels” allowed, e.g.,

E = {0.05, 0.04, ...}, and εp,d ∈ {0, 1}, ∀p ∈ E, d ∈ D. We

also bound �U (t:2) based on the range of possible inputs that

can be achieved by the system.

−Mδε − Φ−1(1− εp)
∑
j

σd,j Ũ(t:2)
j

− [
¯abd + b̄d b̄d

]
�U(t:2) < �rd +Δ

(t:2)
d +

∑
j

σd,j |x(t)
j | (13)

−Mδε +Φ−1(1− εp)
∑
j

σd,j Ũ(t:2)
j

+
[
¯abd + b̄d b̄d

]
�U(t:2) < rd −Δ

(t:2)
d −

∑
j

σd,j |x(t)
j | (14)

∑
p∈E

δεp,d = |E| − 1,∀d ∈ D (15)

Fig. 2: This figure depicts our training architecture where B
refers to the criteria that is being maximized in Eq. 2.

A. Neural Network Function Approximation

Our derivation until now (i.e., Eq. 10, 12-14) has assumed

a linear, continuous dynamics model in the form of �xt+1 =
A�xt + B�ut. Specifically, we have assumed that a multiple

linear regression model is used to learn A and B each time

the optimization problem is solved. However, the dynamics

of an aircraft are often highly nonlinear, thus requiring a

more sophisticated function approximator. We draw support

from the universal function approximation theorem for width-

bounded networks with ReLU activations [21].

We re-derive our model for a two-layer neural network,

with ReLU activations in the first layer and a fully-connected

layer for the second, as shown in Eq. 16-18, where o
(l)

i is

the output of neuron i in layer l, ω
(l)

i,j is the connection

from neuron i in layer l to neuron j in layer l + 1, and

Ξ(t) =
[[
x(t)

]ᵀ
,
[
u(t)

]ᵀ]ᵀ
.

x̂
(t+1)
d =

∑
i

ω
(2)

j,d ∗ o
(2)

i, ∀d ∈ D (16)

o
(2)

i =
∑
j

ω
(1)

j,i ∗ o
(1)

j , ∀i (17)

o
(1)

i =

{ ∑
j ω
(0)

j,iΞ
(t)
j if

∑
j ω
(0)

j,iΞ
(t)
j > 0

0 otherwise
(18)

We must then transform this final equation into mixed-

integer linear constraints to fit within our optimization frame-

work, as shown in Eq. 19-21, with o
(1)

i ≥ 0, ∀i.
Mξi −M +

∑
j

ω
(0)

j,iΞ
(t)
j ≤ 0 ≤ Mξi +

∑
j

ω
(0)

j,iΞ
(t)
j (19)

∑
j

ω
(0)

j,iΞ
(t)
j −M ≤ o

(1)
i ≤

∑
j

ω
(0)

j,iΞ
(t)
j +Mξi (20)

M −Mξi ≥ o
(1)

i ≥ ξi, ∀i (21)

Finally, we can incorporate our mixed-integer linear formula-

tion of a ReLU neural network within our dynamical equations

(Eq. 13-14). Instead of propagating Eq. 10, we recursively

apply Eq. 16-18 for each time step.

In Fig. 2, we provide a graphical depiction of our neural,

model-learning subroutine and we show the architecture that

we utilize to train the neural network. Instead of learning

the plant model from scratch, we choose to learn the change

in the plant dynamics (the difference between the dynamics

estimated by the nominal network or undamaged plant and the

true dynamics of the damaged aircraft) via a neural network. In

practice, we find it requires less training examples to learn the
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change in model dynamics rather than relearn the model from

scratch. Thus, our goal is to learn the mapping of the nominal

estimated plant dynamics to the true damaged dynamics. This

approach is in keeping with prior work in approximating

dynamical models [17], [18], [22].

B. Active Learning: Acquiring Additional Information

We employ active learning to determine which action pro-

vides the most information about the damage. Researchers

[23], [24] have proposed various acquisition functions (i.e.,

heuristics that exist to determine which training data point to

choose). We explore such functions for learning a damaged

aircraft model and introduce our own, well-suited for maxi-

mizing information quickly under computational limitations.

1) Baseline Acquisition Functions:
Model Change [23] – Model change is a measure of the

difference between the current model parameters and the

updated model parameters after the addition of a training

sample. Model change is a good measure of how much the

model will have “learned” after a new training sample is

added. We employ the method proposed by [23] and shown in

Eq. 22. The expected model change is defined as the change in

weights,
δLx(θ)

δθ , given a candidate input and associated label x,

weighted by the conditional probability of x. θ are the network

weights.

u∗ = argmax
u∈U

∫
X

∥∥∥∥ δL(θ)δθ

∥∥∥∥P (x|u)dx (22)

Epistemic Uncertainty [24] – We also consider maximizing

epistemic uncertainty. Uncertainty of a model can be estimated

via the variance of an ensemble of bootstrapped networks. Z

ensembles are created via sampling with replacement of the

original training data. The variance is calculated as a function

of the difference between the outputs of the bootstrapped

models, fz and the average of the models, x̄ as shown in

Eq. 23. We choose the candidate which maximizes the variance

between the bootstrapped models.

u∗ = argmax
u∈U

1

Z

Z∑
z=1

(x̄− fz(u))
2 (23)

2) Our Acquisition Function:
Maximizing Diversity– We propose a novel acquisition func-

tion for active model learning defined in Eq. 3 of Sec. V.

This function minimizes similarity of the candidate data and

the predicted output versus the previous training inputs and

outputs. We want our model to learn the dynamics of the

aircraft across the full range of possible states and actions.

Furthermore, we want a computationally light function for fast

learning. Training inputs and outputs that differ greatly from

those already seen, will provide the most information.

VI. EXPERIMENTAL RESULTS

We empirically investigate our bounded rationality, safe

framework for MPC. First, we compare the relative mer-

its of the acquisition functions proposed for the ac-

tive learning (Sec. VI-A). Second, we evaluate the ef-

ficacy of our framework for quickly regaining high-

functioning control of aircraft under various failure conditions

(Sec. VI-B). We provide a video supplement demonstrat-

ing our simulated damage scenarios. It can be viewed at

https://tinyurl.com/y69stkx9. The code for the simulation can

be viewed at https://tinyurl.com/y4exh7b4.

A. Comparison of Acquisition Functions

Fig. 3a depicts the improvement in information gain and

computation time of our acquisition function vs. the baselines

with increasing number of samples, N. We use maximizing

diversity as our acquisition function as the metric calculations

are faster, its linearity is well-suited for optimization, and its

performance in our framework is on par if not better than

comparable functions in terms of information gain.

B. Safe Recovery from Failure

We test our algorithm in a simulated environment on three

damage scenarios of a Boeing 747 aircraft: 1) 33% loss of the

left wing, 2) complete loss of vertical stabilizer and rudder, and

3) loss of aileron control. For these damage scenarios, we draw

upon prior work that developed theoretical damage models

[25], [26]. Specifically, [27] proposes a 3D aerodynamic state

space perturbation model of 33% loss of the left wing. [28]

provides a model for complete loss of the vertical stabilizer.

The full equations of motion can be found in the cited work.

We utilize these perturbed equations of motion to simulate the

dynamics of the damaged aircraft. The states of the aircraft are

forward velocity (u), vertical velocity (w), pitch rate (q), pitch

angle (θ), sideslip angle (β), roll rate (p), yaw rate (r), roll

angle (ψ), yaw angle (φ), lateral coordinate positions (X , Y ),

and altitude (Z). The control inputs are elevator (Δe), thrust

(Δt), aileron (Δa), and rudder (Δr).

We implement our simulation in Simulink using the open

source flight simulator, FlightGear (Fig. 4). We simulate

sensors (accelerometers, gyroscopes, and magnetometer) with

conservative levels of noise and a sampling rate of 20 Hz. The

goal is to learn the dynamics while staying within the safe

region to avoid unrecoverable configurations of the aircraft.

Given plant inputs �u, states �xk, and resultant states �xk+1, we

learn the model that maps these inputs to outputs. There are

eleven states and four controls to the airplane plant, so our

neural network must learn a mapping from fifteen inputs to

eleven outputs. We choose a simple neural network structure

to keep computational time at a minimum. We found that a

single layer perceptron with linear activation function proved

adequate to represent the dynamics of the plant. Once the

model is learned, we want the aircraft to maintain stable flight,

meaning it retains its altitude and zero degrees roll angle.

These parameters are chosen to avoid stall or spin scenarios.

In our experiment, the desired flight trajectory after damage

had occurred was 50 m/s, 0 degrees roll and pitch, and 300

m altitude. The radius of safety is +/- 10 degrees in the roll

and pitch and +/- 30 meters in z away from the reference

trajectory [29]. We ran Monte Carlo simulations over starting

configurations, i.e., various forward velocities and injected

random noise into the environment.

We benchmark our algorithm against a standard MPC.

While we would like to benchmark against other active
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(a) (b) (c)

Fig. 3: Fig. 3a depicts the information gain versus total computational time for increasing number of training samples (N) for

each of the three active learning functions. The shaded region depicts the standard error. This analysis was done within the

context of our framework. Fig. 3b depicts the trade-off between probability of safe flight versus acquiring new information.

Fig. 3c depicts computation time as a function of the time horizon, T , and the number of probability levels, δε. Our algorithm

can produce safe, information-rich trajectories in 1
10

th
second for T = 5 and with 5 levels of safety.

Fig. 4: The Flightgear virtual environment.

learning frameworks such as those presented in [2] and [3],

their reported time for learning the model are far too slow for

regaining control in the few seconds a robot might have before

entering a terminal state (e.g., an autonomous car crashing or

an airplane entering an unrecoverable spin). The architectures

developed in these works require up to minutes to update the

damage model, yet an aircraft model must be learned in a

few seconds for there to be hope of recovery, especially if

the damage is severe. Furthermore, these architectures do not

include a notion of safety which is critical when dealing with

an unstable system such as an aircraft nor do they account

for as wide a variety of damage scenarios as our architecture.

Therefore, we compare our algorithm’s performance against a

nominal MPC.

Condition 1) Wing Damage – Fig. 5a shows that the

plane stayed within the desired range under our Monte Carlo

simulations and began tracking the reference trajectory once

the damage model had been learned. We are able to detect

when damage had occurred to the wing within 0.1 seconds

and learn an updated plant model in an additional 5 seconds.

The plane is then controlled using the MPC scheme with the

updated plant model once the confidence in the model reaches

the specified threshold. It took approximately ten seconds for

the aircraft to regain stable flight. However, the roll angle

remains at about -3 degrees to compensate for loss of the left

wing. Fig. 5a shows the improvement attained in performance

with active learning. Only with an active learning strategy, the

new plant model was able to be learned in time and the aircraft

control was able to be recovered. When an active learning

strategy was not used, the model could not be learned before

loss of control.

Condition 2) Loss of Vertical Stabilizer and Rudder - In

the case of complete loss of vertical stabilizer and rudder, we

want to determine if we can safely learn the new dynamics

of the plane and track a yaw angle of three degrees. The

dynamics involved with loss of the vertical stabilizer and

rudder proved to be an easier model to learn compared to

wing loss. This is likely due to the fact that loss of the

vertical stabilizer only effects the lateral dynamics of the plane.

The network did not have to learn any change between the

nominal longitudinal dynamics and the damaged longitudinal

dynamics. Fig. 5b shows that when active learning is utilized,

the plane is able to quickly track a 3 degree yaw angle despite

loss of rudder. Without the active learning strategy, the plane

takes considerably longer to track the reference.
Condition 3) Loss of Aileron Control – The last damage

scenario presented is complete loss of control of the aileron.

This effects the ability to independently control the roll of the

aircraft. The results in Fig. 5c show the speed with which

the damaged aircraft reaches the reference trajectory when

active learning is used versus when the nominal MPC policy

is used. Because the dynamics of the aircraft are learned more

efficiently with active learning, the aircraft regains stable flight

and converges to the reference trajectory faster.

C. Bounded Rationality Trade-off
Our bounded rationality framework trades-off acquiring

information to improve model accuracy while also maximizing

the likelihood of safely accomplishing the task (e.g., safe

flight). This trade-off is weighed by a hyper-parameter, λ. To

investigate the sensitivity of our model to this trade-off, we

performed a Monte Carlo analysis sweeping λ (Fig. 3b). The

resulting curve shows our optimization algorithm is able to

achieve a high-probability of safe maneuvering while actively

seeking out information to adapt our dynamics model. We

achieve an average 95% chance of safe flight losing < 10%
information when discounting safety (i.e., 50% safety).

D. Computation Time
To investigate the speed of our algorithm, we conduct a

Monte Carlo sweep of scenarios for various time horizons
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(a) (b) (c)

Fig. 5: Fig. 5a depicts the deviation of roll angle from reference trajectory of zero degrees when wing has been damaged under

Failure Condition 1. Fig. 5b depicts the yaw angle of plane when tracking a 3 degree reference trajectory with complete loss

of vertical stabilizer and rudder under Failure Condition 2. Fig. 5a depicts the deviation of roll angle from reference under

Failure Condition 3. The shaded regions depict the variance in the trajectories over the Monte Carlo simulations.

Results are shown for no active learning (baseline) versus our approach.

in planning for T ∈ 0, 1, . . . , 7 and the number of discrete

safety settings, δε. We find that our algorithm can produce

safe, information-rich trajectories in 0.1 seconds for T = 5
and with 5 levels of safety as depicted in Fig 3c.

E. Sensitivity Analysis

We conduct a sensitivity analysis based on [30] conducting

Monte Carlo simulations varying model parameters, λ and

N and calculate the sensitivity of each parameter in rela-

tion to each perturbed parameter. The nominal parameters

of our model are λ = 0.1 and N = 3. We vary λ ∈
{.001, .01, .1, 1, 10} and N ∈ {0, 1, 2, 3, 4, 5}. In Eq. 24-25,

Dθ
j is the percent change in the estimation error between the

states, S̄θo
j , produced by the nominal parameters, θo and error

states, S̄θ
j , produced by the perturbed parameters, θ. η is the

number of Monte Carlo simulations.

Dθ
j =

(
max(S̄θ

j )−min(S̄θ
j )

2
− ¯

Sθ0
j

)
1
¯

Sθ0
j

× 100% (24)

S̄θ
j =

√√√√ 1

η

N∑
i=1

Sθ
ei

(25)

Our analysis, shown in Fig 6, demonstrates that our control

system is robust to deviations in θo. Specifically, when holding

N at the nominal level, we can vary λ a full two orders

of magnitude from the nominal amount and only experience

between 10%-80% change in our state. Likewise, we can

perturb N by a factor > 2 times the nominal level while

holding λ constant and experience less than a 60$ change in

our state. These results show that our approach is robust to

significant changes in hyper-parameter settings.

F. Summary of Results

We demonstrate our system’s capabilities to recover from

a wide variety of damage scenarios and learn the damaged

dynamics in sub-second time. We show that our system

Fig. 6: Sensitivity of system to parameter perturbations.

learns the dynamics safely, i.e. we are able to guarantee that

the aircraft returns to the envelope of safety with a high

probability, thus preventing it from reaching an unstable con-

figuration. Additionally, our active learning framework shows

improvement over benchmark metrics in the literature while

simultaneously providing a reduced computation time. The

combination of our novel active learning framework along with

our chance constrained optimization formulation outperforms

state-of-the-art model active learning approaches. Our active

learning approach is between 19.38% and 56% faster than [24]

and 60.39% to 78% faster than [23] for N = 1 to N = 15.

Our approach achieves an information gain between .14% and

7.1% greater than [24] and between 0.4% and 8.8% greater

than [23] for N = 1 to N = 15 as shown in Fig. 3a.

VII. LIMITATIONS

A limitation of our work is that it has only been empirically

investigated in the context of fixed-wing aerial vehicles (e.g.,

UAVs). However, our formulation is designed to be general

enough to afford application to systems whose dynamics

can be sufficiently approximated by a ReLU neural network

encoded within a mathematical program.
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Furthermore, our algorithm falls within the vein of math-

ematical programming-based approaches rather than classical

adaptive control schema. As such, we are unable to readily

prove that the system is Lyapunov stable. Nonetheless, we

show that our system is robust to hyperparameters (Fig. 6)

while outperforming state-of-the-art active learning methods

(Fig. 3a), and we demonstrate that our system is able to safely

learn to control a UAV (Fig. 5a-5c).

VIII. FUTURE WORK: PHYSICAL DEMONSTRATION

We provide a brief description of how our system can be

verified on a physical fixed wing aircraft. To deploy our system

on a physical aircraft, we would utilize a standard bind-n-

fly fixed wing aircraft with an on board micro-controller and

telemetry. Many drones require low size, weight, power and

cost (SWAP) which our system provides. Our system is light-

weight enough to be run on a micro-controller such as a

Raspberry Pi or Arduino considering our method requires less

than 1 MB of memory and utilizes less than 35% CPU on

an average PC. Damage scenarios can be created by attaching

a part of the plane (i.e., part of wing) with solenoids. The

power to the solenoids can be cut, thus pushing apart the pre-

broken section of the wing. As demonstrated in our simulation,

the airplane would utilize the bounded rationality framework,

learn the new damage model, and continue to fly. We could

monitor the flight and cause damage via telemetry from a

ground station. We could test our framework on a variety of

damage conditions in this manner.

IX. CONCLUSION

We create a safe, active-learning framework for learning

to control a damaged robot. We demonstrate our algorithm’s

efficacy in simulation for multiple damage scenarios and show

our algorithm’s ability to maintain safe flight of a UAV. Our

novel acquisition function was able to achieve a speed-up of at

least 19.38% over prior work, and our algorithm was able to

produce safe trajectories in 0.1 seconds. As the prevalence of

robots and UAVs grows, it is imperative that these systems

be equipped with adaptive controllers that can compensate

for failures in real time. Our control scheme offers a novel,

potential solution to address this challenge.
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