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Abstract—For robots to perform novel tasks in the real-world, 
they must be capable of learning from heterogeneous, non-expert 
human teachers across various domains. Yet, novice human 
teachers often provide suboptimal demonstrations, making it 
difficult for robots to successfully learn. Therefore, to effectively 
learn from humans, we must develop learning methods that can 
account for teacher suboptimality and can do so across various 
robotic platforms. To this end, we introduce Mutual Information 
Driven Meta-Learning from Demonstration (MIND MELD) [12, 
13], a personalized meta-learning framework which meta-learns 
a mapping from suboptimal human feedback to feedback closer 
to optimal, conditioned on a learned personalized embedding. 
In a human subjects study, we demonstrate MIND MELD’s 
ability to improve upon suboptimal demonstrations and learn 
meaningful, personalized embeddings. We then propose Domain 
Agnostic MIND MELD, which learns to transfer the personalized 
embedding learned in one domain to a novel domain, thereby al- 
lowing robots to learn from suboptimal humans across disparate 
platforms (e.g., self-driving car or in-home robot). 

Index Terms—meta-learning, personalized learning

I.  I  NTRODUCTION

Imagine a world in which robots are part of our everyday 
lives. Self-driving cars take us to and from work. A 7-DOF 
mobile arm empties the dishwasher and later cleans the home. 
Because many real-world tasks are novel and humans may 
differ in their preferences for how to accomplish a task, robots 
cannot be easily pre-programmed. Therefore, robots must learn 
such tasks from human demonstrators [3, 11]. Yet, because hu- 
mans are unlikely to have expert knowledge about how best to 
demonstrate a new route to a self-driving car or show a robotic 
arm how to unload a new dishwasher, humans are likely to 
provide suboptimal demonstrations [5]. Consequently, there is 
a need for learning from demonstration (LfD) algorithms that 
can learn from suboptimal human demonstrators across robotic 
platforms and task domains [14]. 

To effectively learn from humans, prior work in LfD has 
investigated both human-centric (HC) and robot-centric (RC) 
approaches [5]. In HC LfD, the human performs a desired 
task and the robot learns from the demonstrated trajectory 
[2]. While intuitive to the demonstrator, HC LfD suffers 
from performance degradation due to covariate shift [6, 9]. 
Conversely, RC LfD requires the human to observe the robot’s
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behavior and provide corrective feedback. While RC LfD 
solves the covariate shift problem and outperforms HC LfD 
when the feedback is high quality, prior work has shown 
that humans tend to provide low quality feedback to robots, 
making it difficult for robots to learn from humans in an RC 
paradigm [1, 5, 15]. Additionally, prior work has shown inter- 
demonstrator differences, meaning that human feedback is not 
only suboptimal but is also heterogeneous [7, 10, 16]. 

To overcome these limitations of RC learning, we introduce 
Mutual Information Driven Meta-Learning from Demonstra- 
tion (MIND MELD) [12, 13], which meta-learns a personal- 
ized embedding describing an individual’s feedback style and 
maps suboptimal feedback to better feedback, conditioned on 
this learned style. In a driving simulator domain, we demon- 
strate MIND MELD’s ability to outperform prior work and 
show that MIND MELD has superior performance, likeability, 
intelligence, trust, and workload. 

Teaching a car to drive to a goal is just one example of
a domain in which a robot may learn from a human. When 
robots become ubiquitous in the real-world, humans will likely 
have to teach robots across different domains (e.g., in-home 
pick-and-place robot, self-driving car, etc.). Therefore, we 
must develop LfD techniques which are capable of effectively 
learning from humans across diverse platforms. To this end, 
we propose Domain Agnostic MIND MELD which learns
a mapping of an individual’s personalized embedding from 
one robotic domain to another. In future work, we propose 
to demonstrate Domain Agnostic MIND MELD’s ability to 
learn an individual’s personalized embedding in a pick-and- 
place task with a 7-DOF robotic arm and learn to map this 
embedding to a driving simulator domain, thereby improving 
upon RC LfD in both domains.

II.  A PPROACH

A. Calibration Tasks

In this section, we ground our approach in a driving simula- 
tor example in which the objective is to teach a car to drive to a 
goal location. To learn the personalized embedding describing 
an individual’s suboptimal tendencies, or “style” of providing 
corrective feedback, we create a set of calibration tasks. These 
tasks are Wizard-of-Oz [8] rollouts representative of a policy 
learned via LfD and are drawn from the distribution of possible 
tasks that the demonstrator may encounter [4] within that
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domain. In our case, the calibration tasks are representative 
of the car attempting to drive from point A to point B. We 
then calculate the optimal, corrective feedback (i.e., steering 
angle of the car) for each point in time along each calibration 
trajectory. Participants provide corrective feedback by turning 
the steering wheel in the direction they desire the car to go 
for each of the calibration tasks. The participant feedback and 
known ground truth actions are used to train our MIND MELD 
architecture and learn an individual’s personalized embedding. 
For a similar, but different task, such as lane keeping, the 
calibration tasks and ground truths should be designed to 
capture this behavior. More information on the calibration 
tasks and architecture training can be found in [12, 13]. 

Fig. 1 shows our network architecture for learning the per- 
sonalized embedding, w (p) , and mapping from suboptimal cor- 
rective labels to improved labels. The personalized embedding, 
w (p) , describes the way in which an individual is suboptimal 
(e.g., over- or under-correcting in a driving simulator). The 
subnetwork, E �0 , maps a sequence of corrective feedback from
the calibration tasks and outputs encoding, z(p) t ��t:t+ �t . f ✓
maps the encoding, conditioned on personalized embedding, 
w (p) , to the difference between the ground truth label, o t , and
the demonstrators labels, a(p)t , at time, t,  (d(p)t = o t � a(p)t ).
q � learns a mapping from the difference, d(p)t , and encoding,
z(p) t ��t:t+ �t , to a posterior distribution over the embedding,
w (p) . Via variational inference, we maximize a lower bound
on mutual information between d(p)t and w (p) , ensuring that
w (p) can represent various and distinct feedback styles.

III.  H UMAN -S UBJECTS S TUDY

In prior work [12], we conduct a human-subjects study, 
demonstrating MIND MELD’s ability to outperform RC and 
HC LfD. We compare MIND MELD to Dataset Aggregation 
(DAgger) [9] and Behavioral Cloning (BC) [2] in a within- 
subjects study in which participants were tasked with teaching 
a car to drive to a goal in a simulator. Fig. 2 shows that MIND 
MELD outperforms DAgger and BC in terms of average 
distance from goal. We find that MIND MELD is viewed 
more favorably in terms of likeability, intelligence, trust, and 
workload with p  <  .01 and that the learned embeddings 
significantly correlated with stylistic tendencies (p  <  .001) 
and video game experience (p = .038).

IV. F UTURE W ORK

In the following section, we discuss our future work in 
which we propose to demonstrate MIND MELD’s ability to

generalize across platforms and tasks. We introduce Domain 
Agnostic MIND MELD which learns to transfer a personalized 
embedding learned in one domain to a novel domain.

We anticipate heterogeneous robotic platforms may produce 
different behavior and stylistic tendencies amongst partici- 
pants. Therefore, in future work, we propose to investigate 
MIND MELD’s ability to improve upon suboptimal demon- 
strations in a 7-DOF arm domain to show that MIND MELD 
can generalize to diverse robotic platforms. We hypothesize 
that humans will be less optimal in the arm domain compared 
to the car domain due to the complexity of control required.

Because humans must be able to effectively teach various 
robotic platforms to perform novel tasks, it is necessary to 
be able to transfer the learned knowledge about an individ- 
ual’s suboptimal tendencies from one domain to another. For 
example, an individual may need to teach a self-driving car 
a new route but also teach a dishwashing robot how to move 
dishes from cabinet to sink. In both domains, the suboptimality 
of the individual’s demonstration must be taken into account 
to effectively learn from the human. We propose Domain 
Agnostic MIND MELD which learns to map the personalized 
embedding learned in one domain to an embedding describing 
the human’s suboptimality in another domain.

To learn this mapping, we propose to collect human cali- 
bration data to learn an individual’s personalized embedding,
w (p) d , in the driving simulator domain. The same participants
will also perform calibration tasks in the 7-DOF arm domain to
learn their embedding, w(p)

a . We will then learn a mapping of
the personalized embeddings, w (p) d = m a!d (w

(p)
a ,  ~c  (p)) from

the arm domain to the car domain, conditioned on relevant 
covariates, ~c (e.g., experience with video games, experience 
teleoperating a robot). Next, we will conduct a human subjects 
study in which we demonstrate that the embedding learned in 
one domain can be transferred to a novel domain given de- 
mographic information and the mapping, m. This transferred 
embedding will be used to improve upon suboptimal labels in 
the new domain, thereby enhancing the robot’s ability to learn 
from human feedback across disparate domains.

For robots to effectively learn from humans, there is a 
need for LfD algorithms which take into account human 
suboptimality and heterogeneity across disparate platforms and 
domains. Domain Agnostic MIND MELD will meet this need 
by learning transferable personalized embeddings to account 
for human suboptimality and heterogeneity in RC LfD.
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