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Abstract

Learning from demonstration (LfD) techniques seek to en-
able novice users to teach robots novel tasks in the real world.
However, prior work has shown that robot-centric LfD ap-
proaches, such as Dataset Aggregation (DAgger), do not per-
form well with human teachers. DAgger requires a human
demonstrator to provide corrective feedback to the learner ei-
ther in real-time, which can result in degraded performance
due to suboptimal human labels, or in a post hoc manner
which is time intensive and often not feasible. To address
this problem, we present Mutual Information-driven Meta-
learning from Demonstration (MIND MELD), which meta-
learns a mapping from poor quality human labels to pre-
dicted ground truth labels, thereby improving upon the per-
formance of prior LfD approaches for DAgger-based train-
ing. The key to our approach for improving upon suboptimal
feedback is mutual information maximization via variational
inference. Our approach learns a meaningful, personalized
embedding via variational inference which informs the map-
ping from human provided labels to predicted ground truth
labels. We demonstrate our framework in a synthetic domain
and in a human-subjects experiment, illustrating that our ap-
proach improves upon the corrective labels provided by a hu-
man demonstrator by 63%.

1 Introduction
In Learning from Demonstration (LfD), a robot seeks to per-
form a task by observing human task demonstrations (Ar-
gall et al. 2009). In human-centric LfD, the human demon-
strator drives the interaction and provides the demonstra-
tions for each trajectory. In robot-centric LfD, a demon-
strator observes the robot and must provide corrections to
the robot learner for the learner to gather new information
and improve upon its current policy (Laskey et al. 2017).
One such example of human-centric learning is Behavioral
Cloning (BC) in which the demonstrator provides a series of
demonstrations and the agent is trained via supervised learn-
ing. BC, however, suffers from covariate shift and performs
poorly when when the environment’s transition dynamics
are stochastic (Ross and Bagnell 2010; Osa, Neumann, and
Peters 2018). To overcome this limitation, Ross, Gordon,
and Bagnell (2011) introduced a robot-centric approach,
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called Dataset Aggregation (DAgger). DAgger learns a pol-
icy, π0, from the initial trajectories provided by the demon-
strator. π0 is then rolled out and the demonstrator provides
corrective feedback. The new, corrective labels provided by
the demonstrator are aggregated with the previous trajecto-
ries and used to train a new policy.

Prior work in robot-centric LfD has shown that DAg-
ger outperforms human-centric LfD algorithms, such as
BC, when the demonstrator is an oracle that provides high-
quality labels (Ross, Gordon, and Bagnell 2011). However,
such studies do not necessarily translate to the real-world
with human demonstrators (Amershi et al. 2014; Spencer
et al. 2020; Berggren 2019). Prior work by Laskey et al.
(2017) has shown that DAgger performs poorly and may
even perform worse than BC when the demonstrator is a hu-
man and the learner is a neural network. DAgger’s poor per-
formance is due to the fact that humans often provide poor
quality feedback (Sena and Howard 2020). Furthermore, hu-
mans differ in the way they provide this feedback depending
on the task and the human’s abilities (Sammut 1992; Paleja
and Gombolay 2019). This suboptimality and heterogeneity
can make it difficult for robots to learn from human teach-
ers. To effectively learn from a human demonstrator, robot-
centric LfD approaches must take into account a teacher’s
demonstration style to correct for the teacher’s suboptimal-
ity and improve the policy of the learner. Yet, no prior work
has investigated correcting for demonstrator suboptimality
while accounting for heterogeneity among demonstrators.

To overcome this limitation, we introduce Mutual
Information-driven Meta-learning from Demonstration
(MIND MELD), which meta-learns an individual-specific
mapping from human labels to predicted ground truth
labels via a Long Short-Term Memory (LSTM) based
neural network architecture. Because individuals differ in
the way that they provide feedback, we propose to learn
a personalized embedding via variational inference that
encapsulates information about individual tendencies and
corrective styles. This personalized embedding informs the
mapping of an individual’s suboptimal labels to labels that
more closely approximate the ground truth, thus improving
upon the performance of robot-centric LfD methods for
DAgger-based training.

To evaluate the ability of MIND MELD to learn meaning-
ful embeddings and improve upon human-provided, subop-
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timal corrective labels, we conduct a human-subjects study
in which we recruit human demonstrators to provide cor-
rective feedback to an agent. Additionally, we investigate if
the learned personalized embeddings capture salient aspects
of demonstrator style via correlation analysis between the
learned embeddings, stylistic tendencies, personality traits,
and experience metrics.

In our work, we contribute the following:

1. We create a novel, personalized learning from demonstra-
tion framework, MIND MELD, for inferring individual
demonstrator styles and improving upon suboptimal cor-
rective labels.

2. We conduct a human-subjects study in which participants
provide corrective feedback in a series of tasks to train
MIND MELD.

3. We present results that demonstrate the ability of MIND
MELD to improve upon suboptimal human labels and
learn meaningful representations of demonstrator style.
We show that MIND MELD is able to improve subop-
timal human-provided labels by 63% by inferring per-
sonalized embeddings. We demonstrate that these embed-
dings significantly correlate with stylistic tendencies of
the demonstrator (p < .001).

2 Related Works
Prior work has investigated supervised learning approaches
to learn a mapping function from states to actions based
on trajectories provided by an expert demonstrator (Cher-
nova and Veloso 2009; Ross, Gordon, and Bagnell 2011;
Ravichandar et al. 2020; Liu, Gombolay, and Balakirsky
2021). The problem encountered when learning this map-
ping is that the independent and identically distributed
(i.i.d.) assumption is violated because the learner’s predic-
tions affect future states (Ross and Bagnell 2010; Jena, Liu,
and Sycara 2020) and the number of mistakes the learner
makes is quadratically proportional to the time horizon, T .

To address this problem, Ross et al. introduced Dataset
Aggregation (DAgger) which aggregates a training set based
on expert labels queried during a policy rollout instead of
relying on a mixture of previous policies (Ross, Gordon, and
Bagnell 2011). DAgger utilizes the state distribution induced
by the current policy to request labels from the expert and a
gating function determines the mixture of expert and learner
during each rollout. The authors of this work prove similar
linear loss guarantees to prior work and show that DAgger
empirically outperforms prior work.

While DAgger performs well when quality expert labels
are provided, Laskey et al. (2017) demonstrated that robot-
centric learning approaches such as DAgger can result in
mislabelling and therefore poor performance of the learner.
The authors show that human-centric learning, in which
the expert demonstrates the task to the learner, can actu-
ally outperform DAgger. Additionally, DAgger suffers from
the high work load it places on the demonstrator which can
result in expert fatigue and poor results (Kelly et al. 2019;
Laskey et al. 2016; Packard and Onta 2018). Furthermore,

it can be impractical for humans to provide corrective feed-
back to DAgger in real-time (Ross et al. 2013).

To overcome this challenge posed by robot-centric LfD,
prior work has attempted to relieve the burden placed on
the expert by DAgger and improve upon the interaction
with the learner (Daume and Eisner 2012; Kelly et al. 2019;
Spencer et al. 2020; Menda, Driggs-Campbell, and Kochen-
derfer 2019). Daume et al. proposed an imitation learning
by coaching algorithm in which the coach gradually pro-
vides more and more difficult actions for the learner to im-
itate (Daume and Eisner 2012). The coach demonstrates
actions that are preferred by the learner, meaning they in-
duce a lower task loss. Results show that such a coaching
scheme is able to outperform DAgger and achieve a lower
regret bound. To reduce the workload of the expert and im-
prove upon the provided demonstrations, Kelly et al. pro-
posed HG-DAgger which allows the expert to operate the
gating function, meaning that the expert decides when to be
in control and when to passively observe the learner (Kelly
et al. 2019). This alleviates the difficulty of providing accu-
rate labels and consequently learns a stationary policy which
stabilizes around the expert trajectories. Spencer et al. ex-
pands on this idea and utilizes both expert interventions and
non-interventions to learn a policy in the Expert Intervention
Learning (EIL) algorithm (Spencer et al. 2020).

While prior work has learned LfD policies from hetero-
geneous demonstrators (Paleja et al. 2021) and attempted to
improve upon DAgger by handing control back to the hu-
man (Kelly et al. 2019), our approach is the first to improve
upon robot-centric learning by inferring demonstrator style.
Additionally, there is a need for LfD algorithms that can ef-
fectively learn from suboptimal and heterogeneous demon-
strators (Ravichandar et al. 2020).

3 Methodology
In this section, we discuss our methodology for improving
upon robot-centric learning from demonstration. We first
outline our network architecture and learning scheme for
personalized embeddings and label mapping. We next de-
scribe our simulated experiment for proof-of-concept and
to verify our network architecture in Section 4. Lastly, we
describe our human-subjects experiment with humans as
demonstrators in Section 5.

3.1 Preliminaries
We frame the LfD problem as a Markov Decision Process
sans reward function (MDP\R). The MDP\R is defined by
the 4-tuple 〈S,A, T , γ〉. S represents the set of states andA
the set of actions. T : S × A × S ′ → [0, 1] is the transi-
tion function that returns the probability of transitioning to
state s′ from state, s, applying action, a. γ weights the dis-
counting of future rewards. Reinforcement learning seeks to
synthesize a policy, π : S → A, mapping states to actions
to maximize future expected reward. In an LfD paradigm,
a demonstrator provides a set of trajectories, {(st, at),∀t ∈
{1, 2, ...T}}, from which the agent learns a policy.

3.2 Assumptions
In our methodology, we make the following assumptions.



Figure 1: This figure shows the network architecture. a(p)
t′ represents a demonstrator, p’s, corrective label, a, at time, t′. gφ

serves to maximize mutual information between the encoding ~z, the output d(p)
t′ and the learned embedding ~w(p). The objective

is to minimize the mean squared error, (MSE), between the predicted difference, d(p)
t′ , and the true difference, a(p)

t′ − ot′ , of
the demonstrator’s corrective feedback and the ground truth label, ot′ . We feed the sequence of corrective feedback, a(p)

(t:t+∆t),
from time t to t+ ∆t, into the bi-directional LSTM to extract sequential information that may be informative for predicting the
ground truth label at time, t′. The LSTM has a hidden layer with 32 neurons. fθ has a hidden layer consisting of 200 neurons
and gφ has two hidden layers with 64 and 32 neurons respectively.

• In robot-centric learning from demonstration tasks, hu-
mans provide corrective feedback that is suboptimal with
respect to an optimal planner.

• These suboptimal strategies are identifiable and can be
represented as “styles” via a learned embedding.

• Humans provide corrective feedback in a predictable way
across different tasks.
Based on these assumptions, we can learn an individual’s

corrective style to inform a mapping from suboptimal labels
to ground truth labels.

3.3 Architecture
Fig. 1 shows our network architecture. Our architecture con-
sists of three components: 1) The bidirectional LSTM en-
coder, Eφ′ : A → Z, 2) the prediction subnetwork, fθ : Z ×
W → R, and 3) the mutual information subnetwork,
gφ : Z × R → NW . The label that we are trying to im-
prove upon is designated as a(p)

t′ for demonstrator, p, where
t′ ∈ (t, t + ∆t). Z ⊂ Rk is the set of k-dimensional en-
codings extracted from the sequence of corrective feedback.
We utilize the bi-directional LSTM, Eφ′ , to extract an encod-
ing, ~z ∈ Z, for the sequence of corrective labels, a(p)

(t:t+∆t),
provided from time t to t+ ∆t by person p.
W = {~w1, ~w2... ~wP } ⊂ Rd is the set of d-dimensional

personalized embeddings. fθ maps the encoding, ~z, and
personalized embedding, ~w(p), to the predicted difference,

d
(p)
t′ ∈ R, between the ground truth label, ot′ , and the

individual’s corrective label, a(p)
t′ . Because we train gφ to

maximize the log-likelihood as discussed in the next sec-
tion, this subnetwork recovers a multivariate normal distri-
bution, NW (Paleja and Gombolay 2019). Specifically, this
subnetwork learns a mapping of the encoding, ~z, and pre-
dicted difference, d(p)

t′ to a normal distribution (representing
the posterior distribution) of the demonstrator’s personalized
embedding, ~w(p). We initialize w(p) based upon the prior,
ŵ(p) ∼ N (0, 1), and sample from the approximate posterior
to produce ~̂w(p), representing an estimate of the embedding.

3.4 Variational Inference
In this work, we are motivated by the assumption that hu-
mans exhibit various and distinct styles when providing cor-
rective labels to the learner. Therefore, to accurately correct
for suboptimal demonstrations, we encapsulate information
about the individual’s corrective style via a personalized em-
bedding, ~w(p), for individual, p, as described in Eq. 1. In our
formulation, we want to maximize mutual information be-
tween our learned personalized embedding, ~w(p), the encod-
ing of the demonstrator labels, ~z, and corrective mapping,
d

(p)
t′ , to ensure that our embeddings are capturing the salient

information about the demonstrator’s style. Intuitively, max-
imizing mutual information means that observing informa-



Figure 2: This figure shows the creation of the synthetic data. a) shows the artificial DAgger rollouts, b) the ground truth
labels, c) the demonstrators, and d) the corrective feedback. The mapping of suboptimal labels via our architecture, MIND
MELD, produces embeddings shown in f). In f), the diameter of a point represents the degree to which an individual over- or
under-corrects. The color represents the individual’s style (i.e., delayed, anticipatory, or neither).

tive corrective feedback should reduce the uncertainty of our
learned embedding.

Because maximizing the mutual information requires ac-
cess to an intractable posterior distribution, P (~w(p)|~z, d(p)

t′ ),
we employ variational inference and the evidence lower
bound to reach a solution as shown in Eq. 1. Further details
on the derivations can be found in Chen et al. (2016). Via this
formulation, we thus encourage ~w to encapsulate salient in-
formation about the demonstrator’s style. The mutual infor-
mation between ~z, d(p)

t′ and personalized embedding, ~w(p),
is denoted as I(~w(p);~z, d

(p)
t′ ). The variational lower bound

is LI(fθ|~w, gφ|θ) .

I(~w(p);~z, d
(p)
t′ ) = H(~w(p))−H(~w(p)|~z, d(p)

t′ ) ≥ (1)

E[log(gφ(~w(p)|~z, d(p)
t′ ))] +H(~w(p)) = LI(fθ|~w, gφ|θ)

We utilize two separate loss functions to train our net-
work to learn both the embedding, ~w(p) and the difference,
d

(p)
t′ as shown in Fig. 1. We minimize the mean squared er-

ror between the sampled embedding approximation, ~̂w(p),
and the personalized embedding, ~w(p), which is equivalent
to maximizing the log-likelihood of the posterior. We also
minimize the mean squared error between d(p)

t′ and the dif-
ference between the ground truth embedding, ot′ and a(p)

t′ .
These losses are summed (Eq. 2), and are backpropagated
through the layers and the input embedding, ~w(p), to update
and learn the embedding during training. Therefore, during
training, the personalized embedding will eventually con-
verge to reflect the individual’s feedback style. During test

time, this personalized embedding informs the mapping of
new feedback to improved labels.

Lθ,φ,φ′, ~w =
1

K + 1

K∑
k=0

(
( ~̂w

(p)
k − ~w

(p)
k )2+

(d
(p)
k − (a

(p)
k − ok))2

)
(2)

4 Synthetic Experiment
Before evaluating MIND MELD on human demonstrators,
we first conduct a synthetic experiment to fine-tune the ar-
chitecture and evaluate MIND MELD’s ability to correct for
suboptimal labels. To do so, we simulate a driving task in
which the objective of the demonstrator is to teach the agent
to drive to a goal location in the environment. The state space
is defined as the position of the car and the continuous action
space is defined as the angle of the wheel. We assume that
turning the wheel ∆θ causes the car to turn by an equivalent
amount.

To create synthetic training data by which to train our
architecture, we first create a set of artificial DAgger-like
roll-outs (Fig. 2a). The ground truth labels are calculated
as the difference in the heading of the agent and the an-
gle to the goal (Fig. 2b). We create a set of artificial, sub-
optimal demonstrators by randomly assigning each demon-
strator either a delayed (actions are executed later in time
compared to the ground truth), anticipatory (actions are ex-
ecuted sooner in time compared to the ground truth), or nei-
ther style (actions temporaly match the ground truth) and to
be either an over-corrector (actions are greater in magnitude



compared to the ground truth) or under-corrector (actions
are smaller in magnitude compared to the ground truth) by a
randomly selected magnitude (Fig. 2c). This “style” is then
utilized to map the ground truth labels to suboptimal, arti-
ficial human labels (Fig. 2d). We employ this artificial data
to demonstrate the ability of our architecture to correct for
poor human labels.

4.1 Results
Fig. 2f shows the results of the learned embeddings plotted
in latent space. The embeddings for individuals that greatly
over-correct are clustered towards the right of the graph and
those that greatly under-correct are located towards the left.
Those who neither over-correct nor under-correct are located
at the elbow in the plot. Additionally, those who provided
delayed feedback are located towards the top of the plot
and those who provided anticipatory feedback are located
towards the bottom. These results confirm that our embed-
dings learn meaningful representations of an individual’s
feedback style. Furthermore, we confirm that our architec-
ture successfully maps the suboptimal feedback to feedback
that is closer to the ground truth embeddings. We find a 61%
improvement of labels in the calibration tasks. For unseen
test tasks that are not used to train our network, we find
a 55% improvement in the quality of the labels after map-
ping. These results show that MIND MELD is able to learn
meaningful personalized embeddings and utilize these em-
beddings to improve upon suboptimal corrective feedback.

Figure 3: This figure shows the simulator and steering wheel
utilized in our human-subjects experiment.

5 Human-Subjects Experiment
We conduct a human-subjects experiment to evaluate our ar-
chitecture with human demonstrators and illustrate MIND
MELD’s ability to improve upon suboptimal corrective feed-
back. Our study has been approved by the IRB under proto-
col H19630.

5.1 Driving Simulator Domain
We evaluate MIND MELD in a driving simulation domain
with human demonstrators, a common task in prior LfD
work (Laskey et al. 2016; Ross, Gordon, and Bagnell 2011).
We employ the AirSim driving simulator based on Unreal
Engine in conjunction with an Xbox steering wheel and ped-
als, shown in Fig. 3. We utilize a simple Blocks environment
in which the objective of the LfD task is to drive to a large
orange ball. The state space is defined as the position, body
velocity, body acceleration of the car, and the image pro-
vided by the camera located on the front of the car. The ac-

Figure 4: This figure shows the Wizard-of-Oz DAgger roll-
out in blue and the optimal path produced from RRT* in red
at time, t. The goal is shown in green and black blocks rep-
resent obstacles.

tion space is the position of the wheel and is constrained to
be between -2.5 to 2.5.

We create a series of twelve synthetic, DAgger-like roll-
outs, an example of which is shown in Fig. 4. These rollouts
are representative examples of DAgger rollouts that allow
us to capture the feedback styles of participants. The par-
ticipants provide corrective feedback for each pre-recorded
rollout which we then use to train MIND MELD and learn
the parameters of MIND MELD’s three subnetworks, θ, φ,
and φ′ as well as learn the personalized embedding, ~w(p).

Before providing corrective feedback, participants were
given the opportunity to drive in the environment and fa-
miliarize themselves with the controls to mitigate learning
effects and stabilize performance.

5.2 Ground Truth Data
To determine ground truth optimal states for the calibration
tasks, we employ RRT* as shown in Fig. 4. At each point
along each calibration task trajectory, we determine the op-
timal path to the goal via RRT*. We then apply a Stanley
controller to the path to determine the ground truth label at
each point in time.

5.3 Participants
We recruit 34 training participants via mailing lists and
word of mouth. Each of these participants provide corrective
demonstrations for the calibration tasks which are utilized to
train the MIND MELD architecture.

5.4 Metrics
Below we discuss the metrics by which we evaluate MIND
MELD and the learned embeddings. All survey responses
are collected at the beginning of the experiment. All surveys
comply with the design guidelines specified in Schrum et al.
(2020) and are validated in prior work if possible.

Big Five Personality Survey - We collect information
about the participant’s personality via the Mini-IPIP ques-
tionnaire (Cooper, Smillie, and Corr 2010) to determine if
personality correlates with the learned embedding.



Prior Experience - We collect information about a par-
ticipant’s familiarity and experience playing video games,
driving a physical car, and driving a virtual car via three
Likert scales. Each Likert scale has 8 items and a 7-point re-
sponse format (strongly disagree to strongly agree). We aim
to determine whether prior experience with video games or
driving correlates with the learned embedding.

Trust in Automation - We measure the participant’s trust in
automation via the survey presented in Adams et al. (2003).

Stylistic tendencies - We analyzed participants’ tendency
to either over-correct (i.e., turn the steering wheel too far)
or under-correct (i.e., turn the steering wheel not enough)
as well as provide delayed or anticipatory feedback via dy-
namic time warping (DTW) (Salvador and Chan 2004) be-
tween the participant labels, a, and ground truth, o. To esti-
mate the difference in amplitude between the a and o sig-
nals, we used DTW to match up the signals in time and
calculated the distance, Dk, between each time point using
the Euclidean distance, d. We then summed the distances
along the DTW path. To account for whether a participant
was over- or under-correcting, we considered whether a or o
had a larger magnitude (Eq. 3).

D =

K∑
k=0

(−1)xd(ak, ok) where

x =


0 if ok > 0 and ak ≥ ok
1 if ok > 0 and ak < ok
1 if ok < 0 and ak ≥ ok
0 if ok < 0 and ak < ok

(3)

To determine whether a participant was providing delayed
or anticipatory feedback, we determined the number of
timesteps between a and o on the DTW path. If the major-
ity of points in a were matched to later points in o, then
our metric for timing was valued as negative or anticipatory;
otherwise, our metric was positive or delayed. This analy-
sis provided insight into the participants’ stylistic tendencies
and allowed us to determine if the learned embeddings cor-
related with these stylistic tendencies.

5.5 Hypotheses
Hypothesis 1 - MIND MELD will improve the corrective la-
bels provided by the participants in the calibration tasks. We
hypothesize that MIND MELD will be able to sufficiently
capture the stylistic tendencies of the participants and, based
upon these learned embeddings, map the suboptimal labels
to labels that more closely approximate the ground truth.

Hypothesis 2a - The learned embeddings will corre-
late with personality traits. We hypothesize that personality
traits will inform an individual’s corrective style. Therefore,
we will find a correlation between the individual’s personal-
ity and their learned embedding.

Hypothesis 2b - The learned embeddings will correlate
with experience playing video games. We hypothesize that
individuals with more video game experience will provide
corrective feedback that more closely approximates optimal
feedback, which would be reflected in the personalized em-
bedding.

Hypothesis 2c - The learned embeddings will correlate
with driving experience. We hypothesize that those who of-
ten drive cars will find the virtual car and corrective feed-
back to be counter-intuitive due to the fact that the car does
not actually respond to their feedback. Therefore, we expect
to see a correlation between experience driving cars and the
learned embeddings.

Hypothesis 3a - The learned embeddings will correlate
with participants’ tendency to over- or under-correct. Over-
and under-correcting are prominent stylistic tendencies that
we observed in pilot participants. Thus, we hypothesize that
the learned embeddings will encapsulate an individual’s ten-
dency to over- or under-correct and correlate with this ten-
dency.

Hypothesis 3b - The learned embeddings will correlate
with participants’ tendency to provide delayed or anticipa-
tory feedback. We observed that pilot participants tended
to either provide feedback that was delayed or anticipatory.
Therefore, we hypothesize that the embeddings will corre-
late with the amount by which the participant provides de-
layed or anticipatory feedback.

Survey Mean Standard Dev Cronbach’s α

Video Games 30.8 11.9 0.90
Virtual Cars 28.8 10.0 0.91

Physical Cars 36.7 11.9 0.93
Trust 64.3 7.0 0.59

Extraversion 13.3 5.9 0.84
Agreeableness 20.4 3.8 0.67

Conscientiousness 20.4 3.6 0.90
Neuroticism 9.2 5.5 0.78

Openness 18.4 5.2 0.80

Table 1: We report average score and Cronbach’s α for each
survey.

6 Results
We recruited 34 participants (Mean age: 28; Standard devi-
ation: 11.9; 29.4% Female), each of whom completed the
calibration tasks and filled out the questionnaires. The mean
score and internal consistency for each questionnaire is re-
ported in Table 1. We trained MIND MELD on the partic-
ipant data and learned each participant’s personalized em-
bedding. To train our architecture, we employed Pytorch 3.7
with a learning rate of 0.001. We found that we were able
to improve participant corrective labels by 63% on a hold-
out calibration task. This result supports Hypothesis 1 and
suggests that MIND MELD was able to learn the stylistic
tendencies encapsulated in the embeddings as well as learn
how to improve upon suboptimal labels given a participant’s
learned embedding.

To determine if the learned embeddings correlate with
constructs of interest, we performed a correlation analysis
between the learned embeddings and participants’ experi-



Metric Correlation p-value

Video Games 0.19 .28
Virtual Cars 0.24 .18

Physical Cars -.25 .15
Trust -0.06 .75

Extraversion -0.21 .22
Agreeableness 0.14 .43

Conscientiousness -0.033 .89
Neuroticism 0.25 .16

Openness 0.17 .34
Over-/Under-Correct -0.69 <.001

Delay/Anticipate 0.70 <.001

Table 2: We report p-values and correlation coefficients
for the correlation analysis between each construct and the
learned embeddings.

ence, personality traits, and stylistic tendencies. To deter-
mine if our data is normally distributed and homoscedastic,
we conducted Shapiro-Wilk’s test and the non-constant vari-
ance score test, respectively. If the data did not pass the as-
sumption checks, we employed Spearman’s test. Otherwise,
we used Pearson’s test. The results of the correlation anal-
ysis between the learned embedding and the construct are
reported in Table 2. We found participants’ stylistic tenden-
cies (i.e., their tendency to over- or under-correct and pro-
vide delayed and anticipatory feedback) to be significantly
correlated with the learned embeddings. This finding shows
that MIND MELD is able to learn a meaningful representa-
tion of participants’ demonstration styles and supports our
Hypotheses 3a and 3b. While we did not find significance
at the α = .05 level for experience surveys, experience with
virtual cars and physical cars are trending towards signifi-
cance with p-value of .18 and .15, respectively. Although we
do not claim that these results support our hypotheses, since
we do not find significance below the α = .05 level, this
finding suggests that participants who have more experience
operating virtual cars or physical cars may provide stylis-
tically different feedback than those who do not. Similarly,
we find that the personality trait for neuroticism is trending
towards significance (p-value of .16) suggesting that how a
person deals with stress may impact their style of providing
feedback. We additionally performed a t-test to determine if
gender significantly affected the value of the learned embed-
dings. We found that gender was significant for predicting
the learned embeddings with p = .0015.

The relationships we observe between demographic in-
formation, stylistic tendencies, and the embedding space
suggest that MIND MELD is able to learn meaningful dif-
ferences between heterogeneous demonstrators. An explo-
ration of what it means to be more “female” or more of an
“over-corrector” in the context of the embedding space is out
of the scope of this paper and, therefore, we do not comment
on the meaning of these correlations. Advances in explain-

Algorithm 1 MIND MELD
1: Recruit M training participants
2: for t in training participants do
3: Administer pre-study questionnaires.
4: Collect calibration task data from t.
5: end for
6: Train MIND MELD on training participant data and learn per-

sonalized embeddings w(0:M)

7: Freeze architecture parameters, φ, φ′ and θ
8: Recruit test participants
9: for p in test participants do

10: Administer pre-study questionnaires
11: Collect calibration task data from p
12: Initialize ~w(p) to 1

M

∑M
i=0 ~w

(i)

13: Learn ~w(p)via MIND MELD architecture and Eq. 2
14: Present LfD algorithm conditions (MIND MELD, BC, and

DAgger) in randomized order.
15: for c in conditions do
16: Train agent via condition, c, for N demonstrations.
17: end for
18: Administer post-study questionnaires
19: end for

able AI may allow us to further explore the meaning behind
these correlations in future work.

Our main findings are the following:

• MIND MELD improves upon suboptimal, human-
provided corrective labels by 63%.

• The learned embeddings significantly correlate with
demonstrator stylistic tendencies (p < .001).

• The learned embeddings significantly correlate with
demonstrator gender (p = .0015).

• Participants’ experience with virtual cars, (p = .18),
physical cars (p = .15) and neuroticism (p = .16) trend
towards significance.

7 Limitations/Future Work
MIND MELD is limited by the fact that training partici-
pants are required to learn the personalized embeddings and
that we have access to ground truth labels for the calibration
tasks. However, our results demonstrate that MIND MELD
improves the quality of the corrective feedback and LfD out-
comes, making this additional step a worthwhile endeavor.
Additionally, MIND MELD makes several assumptions, as
listed in Section 3, about the way in which individuals pro-
vide corrective feedback. Yet, the success of our algorithm
suggests that these assumptions hold for our purposes.

Because MIND MELD requires ground truth labels in the
calibration tasks, we are assuming there is one optimal so-
lution to the task (i.e., teach the car the shortest path to
the goal). However, some domains may allow for diverse
demonstrations and solutions. For example, in autonomous
driving, one person might prefer to take the scenic route,
while another would prefer the fastest route. In this work,
we investigate heterogeneity of feedback style, but not the
heterogeneity of multiple task solutions. In future work, we



plan to investigate how to account for both the heterogene-
ity of feedback style and the heterogeneity of task solution
preference.

Furthermore, in future work, we plan to conduct another
human-subjects study in which we utilize the MIND MELD
architecture to train an LfD agent. This LfD agent will be
trained on the improved corrective labels provided by MIND
MELD and the policy learned by this agent will be compared
to the policies learned via DAgger and BC. To do so, we will
recruit a set of test participants who will first complete the
set of calibration tasks which will be utilized to learn their
personalized embeddings. Next, these embeddings will be
used to inform the mapping of their feedback when training
the learner for the LfD test tasks. Note that we will freeze
the parameters θ, φ, and φ′ and we initialize an individual’s
personalized embedding to the mean of training participants’
personalized embeddings. The steps comprising our study
described in this paper and our future study are shown in
Algorithm 1.

In future work, we also plan to apply our approach
to a robotic pick-and-place task to determine how MIND
MELD’s abilities to differ in a domain with more degrees of
freedom.
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