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MAVERIC: A Data-Driven Approach to
Personalized Autonomous Driving

Mariah L. Schrum, Emily Sumner, Matthew C. Gombolay, and Andrew Best

Abstract—Personalization of autonomous vehicles (AVs) may
significantly increase acceptance. In particular, we hypothesize
that the similarity of an AV’s driving style compared to a user’s
driving style, the level of aggressiveness of the driving style,
and other subjective factors (e.g., personality) will have a major
impact on user’s willingness to use the AV. In this work, we
1) develop a data-driven approach to personalize driving style
and calibrate the level of aggressiveness and 2) investigate the
subjective factors that impact user preference. Across two human
subject studies (n = 54), we demonstrate that our approach can
mimic the driving styles and tune the level of aggressiveness.
Second, we leverage our framework to investigate the factors that
impact homophily. We demonstrate that our approach generates
driving styles objectively (p < .001) and subjectively (p = .002)
consistent with end-user styles (p < .001) and can effectively
isolate and modulate a dimension of style (i.e., aggressiveness)
(p < .001). Furthermore, we find that personality (p < .001),
perceived similarity (p < .001), and high-velocity driving style
(p = .0031) significantly modulate the effect of homophily.

Index Terms—personalization, autonomous vehicles, human-
robot interaction.

I. INTRODUCTION

Driving style is defined as the characteristics of driving
related to the judgment and decisions of the driver in a
specific situation [15]. Research has shown that driving styles
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differ greatly amongst individuals [39]. For example, the way
in which a driver interacts with other drivers, the level of
aggressiveness that a driver exhibits, and tendency to commit
traffic violations are characteristics that define an individual’s
unique driving style and these characteristics vary across end-
users. Because of these individual differences, when riding in
an autonomous vehicle (AV), prior work suggests that end-
users’ expectations and preferences for the behavior of the
AV will likely be influenced by their own driving style [20],
[21], [35]. One-size-fits-all models employed by AVs which
ignore driver differences may lead to decreased acceptance
[20]. Instead, the driving style of AVs should be personalized
to fit the preferences and expectations of individual end-users.

Much of the prior work in optimizing AV driving styles
has assumed that, to increase end-user acceptance and trust,
AVs should mimic end-users’ unique driving styles [16], [35].
However, even if we are able to personalize an AV’s behavior,
not all end-users will necessarily want the AV to drive exactly
as the end-user drives [6], [43]. In fact, prior work has
suggested that some end-users may want an AV to drive more
cautiously than they drive [6], [16], [43]. Additionally, factors
such as trust and familiarity with AVs and various personality
traits may affect preference for driving styles similar to one’s
own [11], [14], [31].

Based upon evidence from prior work [11], [14], [16], [31],
we hypothesize that the optimal driving style for an AV is a
function of both the end-user’s own driving style and various
subjective factors, such as personality. Therefore, to optimize
driving style, an AV must be capable of learning about an
end-user’s own driving style as well as modulating this style
based upon relevant end-user characteristics. We identify two
key shortcomings in prior work. First, prior approaches that

Fig. 1: This figure shows the 6-DOF driving simulator that we employ in our study. Using this simulator, we demonstrate that MAVERIC is capable of
mimicking driving style as well as modulating the level of aggresion. Additionally, we show that personality, perceived similarity, and high-velocity driving
style impact the effect of homophily.
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are capable of modulating the driving style of an AV do not
take into account the end-user’s own driving style [3], [17],
despite prior work indicating that end-user’s own driving style
is an important predictor of the optimal driving style. Second,
prior works which mimic an end-user’s driving style [8], [25]
are not capable of modulating various aspects of driving style
to account for end-users who do not wish the driving style to
exactly mirror their own.

Our goal in this work is to overcome these limitations and
develop a framework that can mimic an end-user’s own driving
style while also having the flexibility to modulate the level
of aggressiveness to match the preference of the end-user.
Mimicking the end-user’s own driving style provides us with
a good initial guess of the optimal driving style of the end-
user. However, because not all end-users may want an AV to
exactly mimic their style, our framework can also modulate
or fine-tune the aggressiveness of the driving. We choose to
modulate aggressiveness because prior work has indicated that
this dimension has a large impact on end-user preference [6],
[16], [43]. In our work, we define optimal driving style as the
style which maximizes preference of the end-user.

We additionally leverage our framework to investigate the
effect of homophily (i.e., preference for a style similar to
one’s own) and identify the subjective characteristics (i.e.,
personality traits, trust, etc.) that are predictive of preference.
We do this by modulating the driving style to be more or
less similar to that of the end-user. Our framework enables
us to both study preference in the context of homophily as
well as mimic and modulate style to ultimately match end-
user preference.

We introduce Manipulating Autonomous Vehicle Embed-
ding Region for Individuals’ Comfort (MAVERIC). By observ-
ing the driving of an end-user, MAVERIC learns a high-level
model via a neural network architecture that predicts person-
alized control parameters for low-level controllers to mimic
the driving style of the end-user. Simultaneously, MAVERIC
learns a personalized embedding representing the driving style
of an end-user. By shifting the personalized embedding along
the gradient of aggressiveness, MAVERIC is capable of tuning
the AV driving style to be more aggressive or cautious while
maintaining other characteristics such as minimum headway
distance.

In a human-subjects study, we demonstrate the ability of
MAVERIC to effectively mimic an individual’s driving style
as well as modulate aggressiveness with respect to one’s own
driving style while maintaining other aspects of driving style.
MAVERIC’s ability to modulate aggressiveness enables us
to additionally study the effect of homophily and determine
which subjective factors impact an end-user’s preference for a
style that differs in aggressiveness compared to their own. We
demonstrate that preferred driving style is related both to one’s
own style as well as personality traits, perceived similarity, and
self-reported high-velocity driving. We validate our approach
in a highway domain and in future work we aim to investigate
our approach in more complex and varied domains.

In this work we contribute the following:

1) We formulate MAVERIC, a novel framework to person-

alize driving style and modulate aggressiveness while
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Fig. 2: This figure shows our domain of light traffic and associated state

information. vicv) is the velocity of the ego at time ¢, vﬁlv) the velocity of
the leading vehicle, dgz) the distance between the leading vehicle and ego in

the x direction at time ¢, and dgw the distance in y at time ¢.

maintaining other aspects of driving style.

2) We demonstrate that MAVERIC can closely match an
end-user’s driving style (p < .001) as well as produce
more aggressive (p < .001) and more cautious (p <
.001) driving in a high-fidelity driving simulator.

3) We find that personality (p < .001), perceived similarity
(p < .001), and high-velocity driving style (p = .0031)
significantly impact the effect of homophily.

II. RELATED WORK

Driving style is defined as the characteristics of driving
related to the judgment and decisions of the driver in a
specific situation [15]. Prior work has shown that human
drivers exhibit a vast array of different driving styles. Prior
work has proposed various ways to categorize driving style.
For example, Taubman-Ben-Ari et al. divide driving style
into four different categories: risky, anxious, dissociative, and
distress reduction driving [37]. Other work categorizes types
of driving styles into aggressive or defensive [28]. Because
of these differing driving styles, prior work has shown that
humans will expect their AVs to drive in a specific manner
that is likely related to their own driving style [6]. To meet
the expectations of human end-users, AVs must be capable of
learning about their end-users and personalizing their driving
styles accordingly.

Because prior work has suggested that driving style has a
large impact on preference and that preference varies across
end-user, we develop a framework that is capable of adjusting
driving style to meet end-user preferences.

A. Aggressive Driving Style

A common way to categorize driving style is via the level
of aggression. Aggression can be measured objectively or
subjectively [7], [37]. For example, Bellem et al. quantify
driving style via objective metrics including jerk and headway
distance [7]. To gain an understanding of a driver’s view of
their own aggressive style, Harris and Norman developed the
Aggressive Driving Behavior Scale [19].

Prior work has investigated the impact of the level of
aggression of an AV’s driving style on end-user acceptance.
Ekman et al. conducted a Wizard-of-Oz study using a Vovlo
vehicle with a professional driver demonstrating the various
driving styles. The authors compared defensive and aggressive
driving styles found that a defensive driving style produced
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higher trust scores in a Wizard-of-Oz study [16]. Similar work
by Basu et al., Yusof et al., and Karlsson et al. found evidence
supporting the important impact of the level of aggression on
end-user preferences [6], [24], [43]. Because of the large body
of literature showing the importance of aggressive driving
style, aggressiveness of an AV should be taken into account
when designing the optimal AV driving style.

Due to the large impact that aggressiveness has on pref-
erence, our approach focuses on modulating the level of
aggressiveness to meet end-user preferences.

B. Mimicking Driving Style for Improved End-User Experi-
ence

To increase trust, likeability and overall acceptance of the
AV there is a need for personalized control frameworks which
are capable of adapting to the driving style of individual end-
users. Prior work has introduced a variety of approaches to
adapt AVs to meet end-user needs and expectations. Many
of these approaches aim to mimic an end-user’s own driv-
ing style. For example, Kuderer et al. utilized an inverse
reinforcement learning approach to produce personalized AV
behavior via a learned cost function [25]. The authors employ
a feature-based reward function learned from human data to
mimic the driving style of the end-user. They evaluate their
approach by comparing average acceleration and jerk over
trajectories. Based upon this evaluation, the authors show
that their approach captures distinct driving styles. While this
method was capable of learning distinct driving styles for
different users, the authors did not evaluate their approach in
a human subjects study and their approach is not capable of
modulating style.

Other work investigates personalization of specific aspects
of driving to mimic that of an end-user [8], [18]. For example,
Bolduc et al. developed an approach to match driver’s style
for adaptive cruise control [8]. The authors extract parameters
from the end-user’s own driving and utilize these parameters
to inform the cruise control. Feng and Yan explored per-
sonalization of lane changes via a support vector machine
[18]. By collecting data from lane changes of end-users, the
authors train a personalized support vector machine (SVM)
to mimic the lane changing style of the end-user. While these
approaches have demonstrated that personalizing an end-user’s
own driving style can lead to increase acceptance and trust in
the AV, the question still remains as to whether or not mimicry
is the optimal strategy for an AV.

Prior works that learn to mimic the driving style of the
end-user via IRL or supervised approaches presuppose that
mimicry is the only relevant objective for personalization. In
our work, we aim to learn a more expressive representation
of end-user driving style that allows us to go beyond simple
mimicry.

C. Should We Mimic End-User Driving Styles?

Despite the many approaches that have been developed
for mimicking the driving styles of an end-user, prior work
suggests that end-users may not want an AV to drive exactly
as they drive. Instead various latent factors may influence a

driver’s preference for a specific driving style that may differ
from their own driving style [6], [16], [43]. For example, A
Wizard-of-Oz study conducted by Yusof et al. found that many
end-users prefer a more defensive driving style compared to
their own. In this work, the authors conducted a study using an
Audi test vehicle to realistically simulate an AV. Based upon
a self-reported questionnaire, participants were categorized as
either defensive or assertive drivers. Then each participant
experienced a defensive and assertive AV driving style. The
authors found that preference for an assertive or defensive
driving style depended on the driver’s own style and that
aggressive drivers prefer more defensive AVs [43].

Basu et al. conducted a study investigating preference for
driving styles both similar and different from one’s own [6].
The authors investigated a style intended to mimic the partic-
ipant’s driving style, an aggressive driving style, a defensive
driving style, and a distractor style. Basu et al. evaluated their
approach via summary statistics that describe the minimum
headway distance, mean headway time, distance headway
merge back, and velocity. They compare these metrics across
conditions to answer their research questions. We utilize a
similar set of metrics to evaluate our approach.

More than half of the participants preferred a driving style
different from their own. The largest predictor for preference
was perceived similarity suggesting that participants did not
want the AV to drive as they drive, but instead preferred
the AV to drive like the end-user thinks they drive. This
finding suggests that, because humans often lack introspection
and have a poor perception of their own driving style, their
preferred style often differs from their actual driving style [6].
Based on these results, the authors suggest that we can not
simply rely on mimicry and instead, must also account for
other end-user characteristics to determine the optimal driving
style.

In keeping with prior work [6], we posit that viewing
mimicry as the sole objective when optimizing driving style
limits the potential for personalization. Our work aims to over-
come this limitation by enabling driving style to be modulated
based upon latent factors.

D. Modulating Driving Style for Improved End-User Experi-
ence

Rather than mimic the driving style of the end-user, Ling
et al. introduced a method to adapt driving style online based
on the emotional responses of passengers [27]. This approach
utilizes EEG signals to analyze the emotions of the passenger
and then employs this information to automatically adapt the
driving style of the vehicle to match the emotional state.

Prior work has introduced several classic control approaches
which allow for tuning of the level of AV aggressiveness.
For example, Eriksson and Svensson [17] introduced a linear
quadratic controller for tuning the driving of an AV to optimize
ride quality. Bae et al. [3] introduced an approach which allows
the user to specify the desired parameters for a controller
to adjust the driving style of the vehicle with respect to
acceleration and jerk. Bae et al. evaluate their approach via a
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Fig. 3: This figure shows our network architecture. Fiy predicts the following distance. C', predicts when a lane change should occur for the ego vehicle.
Vi outputs the velocity of the ego vehicle. Sp is the style predictor subnetwork which predicts the subjective aggressive style of the participant from the
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the approximate posterior defined by M.

novel driving preference metric to capture end-user preference
for the various driving styles. However, these approaches do
not consider tuning driving style with respect to the end-
user’s own style and may require expert knowledge of vehicle
dynamics and complex control parameters to determine the
correct parameter settings.

While prior work has investigated mimicking driving style
and tuning style via controllers, no prior work has created
an architecture that can modulate driving style with respect
to an end-user’s own style. Yet, prior work provides evidence
that this functionality is important for optimizing driving style
for an end-user [6], [43]. Additionally, prior work has not
extensively investigated the relationship between subjective
factors and preference for styles similar to one’s own. In our
work, we seek to fill these gaps by proposing an approach
capable of producing more or less aggressive behavior with
respect to the end-user’s own driving style. Lastly, we conduct
a thorough investigation into the factors that impact the effect
of homophily.

III. METHODOLOGY

In the following section we provide an overview of
MAVERIC as shown in Fig. 4. We discuss our architecture
(Fig. 3) and how we endow our framework with the ability
to both mimic an end-user’s driving style as well as modulate
aggressiveness. Fig. 2 depicts the state information relevant to
our architecture.

By maximizing mutual information between a learned per-
sonalized embedding and the end-user’s driving behavior, our

is the velocity of the lead vehicle from time ¢t — At to ¢. d

(@)

i Ay 18 the distance

is the distance in y. w(®) is the estimate of the participant’s personalized embedding sampled from

framework captures information about the end-user’s driving
style and utilizes this information to mimic their driving style
(Section III-B). We train MAVERIC on a set of training
participants (Section III-B) to learn the network parameters
that map the learned personalized embedding and relevant state
information (e.g., distance from leading vehicle) to high level
control parameters (e.g., velocity). To mimic the driving style
of a new driver, we freeze the network parameters and simply
learn the new driver’s personalized embedding based upon
data collected from observing the driver (Section III-B). To
tune the level of aggressiveness, we determine the gradient of
aggression within embedding space and shift the personalized
embedding along this gradient (Section III-D). A detailed
description of each of these capabilities is provided in the
following sections.

A. Network Architecture

Our network architecture is depicted in Fig. 3. Our network
simultaneously learns the high-level parameters (e.g., timing
of lane change) of low level controllers (e.g., lane change
controller) and the personalized embedding, w(®), representing
the driving style of an individual, p. See Section III-E for
details on the low-level controllers. Our network is composed
of five subnetworks: the Following Distance Predictor, Fy,
Lane Change Predictor, Cy, Velocity Predictor, V3, Style
Predictor, Sy, and Mutual Information, M, with parameters ¢,
1, B, 0, and . Because humans rely on historical information
to make decisions, to better model human decision making, we
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Fig. 4: This figure shows an overview of our MAVERIC training and testing framework. During training, we collect information about the end-user’s driving

data including their velocity (vﬁev)) following distance (ft(ev

)), and lane changes (lﬁev

)). We use this data to learn the personalized embedding, w<p), via loss,

L, describing the driving style of the end-user. During testing, this personalized embedding along with relevant state information are fed into the MAVERIC

framework to predict the high-level control parameters (ﬁtev), ft(ev)

MAVERIC framework is shown in Fig. 3.

employ an LSTM based architectures in our subnetworks when
interaction history may be informative for predictions [40]. We
utilize LSTMs instead of transformers because transformers
would likely require prohibitive amounts of data to achieve
similar performance. Each of the subnetworks relies on the
personalized embedding, w() to inform the predictions.
Following Distance Predictor (F)

« Inputs: personalized embedding, w(®), and the velocity of
the lead vehicle, v

o Outputs: desired following distance, ft(ev), between the
ego vehicle and the lead vehicle.

o Layers: fully-connected with ReLU activations.

e Loss Function: mean-squared error loss defined as
Ly(p,w®) = £ 5 1A = £ B). where £ is
the ground truth following distance of the end-user.

Lane Change Predictor (Cy)

o Inputs: personalized embedding, w(®), ego velocity,

v{®), .. the velocity of the lead vehicle, v\'’,.,. and x-

distance between the ego and lead vehicle, dif)m:t, from
time t — At to t.

o Outputs: Z§6”>, i.e. when a lane change should occur.

o Layers: fully-connected with ReLU and softmax activa-

tion.
e Loss Function: cross-entropy loss defined as
Ly(y,w®) = -4 thﬁw)loglf“) where lge”) is

a binary variable indicating a lane change.
Velocity Predictor (V)

o Inputs: personalized embedding, w(®), velocity of the
lead vehicle, fugl_vgt:t, y-distance, dgli)At:t’ and x-distance,

, and fgev

)) to mimic the end-user’s driving style. A more detailed depiction of the

dif)Am, between the ego and lead vehicle, from time

t — At to t.

« Outputs: predicted speed of the ego, © A(ev) , at time ¢.

o Layers: fully-connected with ReL.U actlvations.

e Loss Function: mean-squared error loss defined as
Ly(Bw®) = L3, ||vte”) - ﬁt(ev)“%) where vt(ev) is
the velocity of the end-user.

Style Predictor (Sp)

o Inputs: personalized embedding, w(®).

« Outputs: subjective aggressiveness, §), of participant, p.

o Layers: fully-connected.

o Loss Function: Ly(6,w®) = L o ||s®) — §(p)||§)
where s(P) is the subjective aggressive style of the end-
user as self-reported via a questionnaire. In Section III-D,
we discuss the importance of this subnetwork and how
we obtain s(P).

Mutual Information (M,):

Our goal is to learn a representation of driving style that,
when observed, most reduces uncertainty about the end-user’s
driving style. By doing so, we ensure that our embedding
learns salient features of driving style. This objective can
be achieved by maximizing mutual information between the
representation (i.e., personalized embedding) and the data
describing the driving style. This mutual information term is
difficult to optimize in practice because it requires access to
an inaccessible posterior for the probability of the embedding
given the observation history and driving actions. To address
this problem, Barber and Agakov [4] lower bound the mutual
information via variational information maximization, which
utilizes a synthetic distribution to approximate the posterior.
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This posterior is trained by minimizing the MSE between
w® and ). Following prior work, we employ variational
information maximization and define an auxiliary distribution,
M,,, to approximate this posterior [30], [32].

(1v)

o Inputs: v;"’, encodings of the relevant time series state

information 2" ., and 2{"s,.,. and the outputs of each

of the other subnetworks, l;(w), @t(e”), ft(w), and 5®),

o Outputs: w®) ~ N (u®) o@),

o Layers: fully-connected layers with ReLU activations.

o Loss Function: mean-squared error loss defined as
Ls(o, w®) = % Zp ||w®) — f,;,(p)||§)_

With this setup, we train w(®) to capture salient information
about an end-user’s driving style by maximizing a lower
bound, L;(Fy,Cy,Vs,Se, M), on mutual information. Eq.
1 shows the lower bound on mutual information as derived
in Barber and Agakov et al. [4]. X represents the vector

.. (o) ()
containing the relevant state parameter (v; °, 2, ;. and
zt(ﬁ)m:t). ‘P represents the vector containing the outputs of the

subnetworks ( ft(ev), lgev), vt(e”), and S(}’)). X and P are used
to recover the distribution, w® ~ N (u®) o®)). w®) is the
estimate of the participant’s personalized embedding sampled
from the approximate posterior defined by M.

I(w®; x,P) = Hw®) - Hw®|x,P) >
Ellog(Ma (w®|X, P))] + H(w®)) = L(Fy,Cy, Vs, Sp, Ma) (1)

B. Training Procedure

Alg. 1 shows the training procedure. We train our
MAVERIC architecture to minimize the five loss func-
tions, L1 (¢, w), La(¢p, wP), L3(B,w®), Ly(h,w?), and
Ls(a,w®). Loss functions L; through L, are utilized to
train the four predictor subnetworks. Ls(«) minimizes the
MSE between the embedding ") sampled from the approx-
imate posterior and the true embedding, w® (Ls(co, w?) =
~ 2, [lw® — @@ |[3). This is equivalent to maximizing the
log likelihood of the posterior represented by M, [30].

We initially train our architecture on a set of data gathered
from a large distribution of drivers (which we refer to as
training the participants). We note that we initialize w® (Alg.
1, Line 9) for each of these drivers by sampling from the prior,
w® ~ U(0,1) [30]. The sum of these five losses (Eq. 2)
is then backpropagated through each of the subnetworks and
w® to simultaneously learn the network parameters ¢, v, 3,
0, and « and the personalized embedding representing each
driving style (Alg. 1, Line 5). To apply the framework to a
new end-user, we first freeze the network parameters (Alg. 1,
Line 6). Then we collect data of this new end-user’s driving
style and learn the personalized embedding (initialized to the
mean of the training participants’ embeddings) describing the
new end-user’s driving style (Alg. 1, Lines 9-11). Intuitively,
this means that, for a new end-user, we are learning where this
end-user’s driving style falls within the distribution of training
participants.

Algorithm 1 MAVERIC Procedure (Details about the human
subject study can be found in Section IV-C. Interactions with
subjects are italicized.)

1: for q in training participants do

2. Collect pre-study survey data from q

3. Collect driving data from q

4. end for

. Perform gradient descent on ¢, 6, ¢, 3, a, and
w until convergence (Eq. 2)

6: Freeze ¢, 0, 1, 3, and «

7. for p in test participants do

8

9

i

Collect pre-study survey data from p
Initialize w® < L3V w® where w® is
the embedding of training participant, ¢

10:  Collect driving data from p

11:  Perform gradient descent on w® until conver-
gence

12: Present study conditions {Mimic, Aggressive,
Cautious, and Perpendicular} in randomized

order.
13:  for c in conditions do
14: Shift embedding as described in Section
IV-D
15: Present driving style, c, to participant, p
16: Collect post-trial survey data
17 end for
18: end for

1 ev rlev ev 7lev ev ~(ev
L:N;(Hfé BN - 1 108 T+ 0f = 5 |1B) +

%Z <||5<p) _ §(P>“§ + [Jw® — uy(p)“%) )
P

C. Training Data

To learn the network parameters, ¢,, 3,6, and «, we
collect 10 minutes of driving data at 4hz from 38 examples
of driving data (91,200 total samples). We collect data from a
diverse set of participants (See Section IV for more details) to
cover the distribution of potential driving styles and thereby
decrease issues related to covariate shift when MAVERIC
is applied to a new participant. To learn the personalized
embedding, w®, of a new driver, we collect 10 minutes
of driving data at 4 hz (2400 samples per participant). We
find we can represent the driving style of an end-user via
a 3-dimensional vector and that increasing the size of the
embedding did not significantly improve the accuracy of
predictions. Because, for a new-end user, MAVERIC only
needs to learn a 3-dimensional personalized embedding rather
than learn a large number of neural network parameters, we
are able to accurately model the driving style of a driver
with relatively few samples. We found that collecting 10
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minutes of training data per end-user (2,400 samples) was
sufficient to learn driving style within the context of our study
setup. However, we hypothesize that more training data will
be required to sufficiently learn driving style in more complex
scenarios that are common in the real world.

D. Modulating Aggressiveness

We designed MAVERIC to be capable of both matching
driving styles of individuals and modulating aggressiveness
with respect to an individual’s driving style. Because
MAVERIC learns a latent embedding space, we aim to create
a dimension of aggressiveness within the embedding space,
allowing us to shift an embedding along that dimension
and modulate aggressiveness, while keeping other driving
characteristics unrelated to aggressiveness constant. To
achieve this objective, we add an additional signal when
learning the embedding space. Specifically, we add a network
head, Sy, composed of a fully-connected layer which takes
as input the personalized embedding, w(®). Sy is trained to
predict the subjective aggressive driving style of the user
as measured by the participant’s response to the Aggressive
Driving Behavior (ADB) scale [19]. By doing so, we create
an aggressive dimension within the embedding space. We then
move along the gradient of aggressiveness (V,,5y) to produce
a more or less aggressive driving style as shown in Fig. 5.

While driving style has multiple dimensions [37], we focus
on the aggressive dimension, as prior work has shown that this
dimension has a large impact on end-user preference [6], [16],
[43]. Other characteristics of driving could be modulated by
following a similar procedure. While we acknowledge that the
ADB scale is a noisy metric, as discussed in Section V, our
results demonstrate that our method can effectively produce
more and less aggressive behavior.

E. Low Level Controllers

MAVERIC learns the parameters for low-level controllers
(e.g., velocity, timing of lane change, etc.) rather than directly
learning the low-level controls (i.e., throttle and steering) to
enable safety constraints and to account for unexpected or
dangerous behavior that could be produced by the network.
For example, by learning the desired following distance for an
end-user and utilizing an adaptive cruise controller to main-
tain this distance, we can ensure that the following distance
remains safe. Additionally, by predicting when a lane change
should occur via the neural network and utilizing a low-level
controller to execute the lane change, we ensure consistent and
smooth lane changes. Furthermore, this hierarchical method of
learning and control has been shown to produce better results
in prior work [29].

We utilized the specific controllers described below because
they have been shown to be robust and produce desired
behavior in prior work [34]. However, our approach is agnostic
to the type of low level controller and these controllers could
be exchanged for other controllers.

Lane Change Controller: Our lane change controller is
based on a Stanley controller [34] and follows a Bezier curve
[2]. We compute the Bezier curve based upon the desired

distance (selected to produce natural behavior) to complete
the lane change, while ensuring that the ego vehicle will not
collide with the leading vehicle. The lane change controller
executes a lane change when I\ > 4.

Velocity Controller: We utilize a proportional and integral
(PI) controller to maintain the desired velocity, @t(ev), of the
ego vehicle as predicted by the neural network.

Following Distance Controller: When the distance be-
tween the ego and leading vehicle falls below threshold, A, we
switch from the velocity controller to the following distance
controller. The following distance controller is a PI controller
that minimizes both the error between the desired following
distance, ft ev), as predicted by the neural network and the
difference in speed between the ego and leading vehicle
subject to safety constraints on following distance.

IV. HUMAN SUBJECTS STUDIES

We conducted two human subjects studies: A Model Train-
ing Study (Study 1) and a Model Testing Study (Study 2).
In Study 1, we collect data (91200 data samples in total)
from 30 participants to train MAVERIC and learn 6, ¢, 1,
«, and f3, and the participants’ embeddings. We then freeze
these parameters, and in Study 2, we collect driving data from
24 participants to learn their embeddings. Then, to study the
effect of homophily, each participant experiences the four AV
conditions described in Section IV-D. The study design is fully
counterbalanced. Research was approved by an Institutional
Review Board (protocol #20221727).

A. Driving Simulator

To evaluate MAVERIC, we utilize a high-fidelity, research
grade driving simulator. The simulator (Fig. 1) is an immersive
installation featuring a 6-DOF platform capable of emulating
the motion of a vehicle. The simulator software is based
on CARLA [13], ROS2, and Unreal Engine. The simulator
provides high-fidelity state-of-the-art graphics and 120 hz
refresh rate. The cabin is equipped with a standard digital
speedometer, side and rear-view mirrors, a consumer-grade
racing wheel and pedal assembly, and digital shifter. The
center-console is a tablet which is used to collect subject
responses after each trial. Additional details on the simulator
can be found at Medium'. The scenario environment is a
sparse two-lane highway of 50km and standard lane-width.
Road-side decorations are omitted to reduce distraction and
mitigate motion-sickness. Additional details on the scenario
setup can be found in Section IV-C.

B. Participants

Model Training Study (Study 1): We recruited 30
participants (Mean age 35.4; 27% Female) via word of mouth
and mailing lists. Four of the participants were professional
drivers who demonstrated aggressive, cautious, and their own
driving style to ensure that we train on a wide distribution
of styles. In total, we collected 38 data points representing
various driving styles.

Uhttps://medium.com/toyotaresearch/847f36eal03e
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Fig. 5: This figure shows the learned embedding space. The size of the points
represents the subjective aggressive style of the participant and color repre-
sents the average velocity. The black line shows the vector of the aggressive
gradient. The red square represents a candidate learned embedding of a test
participant. We shift the embedding along the gradient to increase (orange
square) or decrease (yellow square) the ADB [19] score by 15 points to
produce behavior for the aggressive and cautious conditions respectively. We
randomly sample from the gray points to produce the Perpendicular behavior.

Model Testing Study (Study 2): Study 2 was run with two
different populations of participants to increase diversity. For
the internal study, 12 subjects were recruited internally (Mean
age 34.42; 33.4% Female). For the external study, 12 subjects
(Mean age 43.92; 41.7% Female) were recruited from the
general public via Fieldwork recruiting. External participants
were compensated $250. The populations are analyzed as a
collapsed dataset because the procedure was identical.

C. Procedure

We investigate personalization of driving styles in the do-
main of light traffic on a two-lane divided highway with both
lanes going in the same direction (Fig. 2). We chose to test
our framework in a domain in which participants would be
forced to make various decisions and judgements and expose
their driving style. At the same time, our goal is for the
domain to not be so dynamic and complex that it would
be difficult to compare driving styles across individuals and
properly evaluate our framework’s ability to capture diverse
driving styles. Alg. 1 shows the study procedures.

Study 1: Participants first complete pre-study surveys (Alg.
1, Line 2) to collect information about demographics and
attitude towards AVs (Section IV-E). Participants complete
a practice session to familiarize themselves with the vehicle
controls and domain. Participants control the vehicle and
demonstrate their driving style for 10 minutes (Alg. 1, Line
3). Their task is to drive as they would in their own vehicle.
They are instructed to maintain the speed they would typically
drive if the speed limit is 55mph and to pass other vehicles
when they feel it is appropriate. In this domain, participants
encounter vehicles in the same lane (lead vehicles) and
in the adjacent lane (off-lane vehicles). Participants must
make decisions about changing lanes, following distance, and

velocity. The speed of the lead vehicles is randomly selected
without replacement from the set {0.85v,, 0.9v,, 0.97v,, 0.9s,
s, 1.1s} where v, is the ego target speed and s the posted
speed (55mph). These speeds ensure consistency across
participants but also ensures that a portion of the leading
vehicles are slower than the ego, thus forcing the participant
to make a decision about changing lanes. We then use the
collected driving data to learn the network parameters and the
training participants’ personalized embedings (Alg. 1, Line 5).

Study 2: In the testing study, we freeze the network
parameters, ¢, 0, ¥, 8, and « learned from Study 1 data (Alg.
1, Line 6). Participants fill out the pre-study surveys (Alg. 1,
Line 8), complete a practice round, and then drive the vehicle
in the highway domain for 10 minutes (Alg. 1, Line 10). We
collect their driving data to learn their embedding. This first
part of the procedure mirrors the procedure experienced by
training participants. All participants next experience four AV
conditions as described in Section IV-D (Alg. 1, Line 15).
After each condition, participants fill out surveys about their
subjective perception of the AV (Section IV-E).

D. Model Testing Study Conditions

The AV behaviors for the four conditions described below
are created by shifting a participant’s embedding in the em-
bedding space. Fig. 5 shows the learned embedding space and
how we choose the embedding to create the behavior for each
of the conditions. We hypothesize that Mimic will produce
similar behavior relative to the participant’s driving, Aggres-
sive will produce more aggressive behavior and Cautious, less
aggressive. By exposing participants to these four conditions,
we investigate MAVERIC’s ability to mimic end-user driving
style as well as modulate aggressiveness.

Mimic: In Mimic, we utilize the personalized embedding
learned from the participant’s data to produce driving behavior
to mimic the participant’s own driving style.

Aggressive: In Aggressive, we shift the participant’s
embedding in the positive gradient of aggressiveness
(equivalent to 15 points on the ADB survey) to produce more
aggressive behavior while maintaining other characteristics
of driving style (i.e., Sp(w®) = 5P 4 15). We constrain
5(P) 115 to be no more than the largest possible score on
the ADB survey (55 points).

Cautious: In Cautious, we shift the embedding in the
negative gradient of aggressiveness (Sg(w?) = §() — 15)
to produce less aggressive behavior while maintaining other
characteristics of style. We constrain §() — 15 to be no less
than the smallest possible score on the ADB (11 points).

Perpendicular: We include Perpendicular to conduct an
exploratory investigation into the behavior produced when we
maintain the level of aggressiveness but move the embedding
within the plane perpendicular to the aggressive gradient.
Moving in the plane perpendicular to aggression means that we
are able to maintain the level of aggression while modulating
other latent aspects of driving style. The plane passing through
embedding w(?) perpendicular to the aggressive gradient is de-
fined as V,,Sp - (z —w)) = 0 where z is a point in the plane.
Our objective is to investigate which driving characteristics
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Fig. 6: This figure depicts the difference between the AV’s driving style and the participants’ driving style for our objective and subjective metrics. We show
that both objectively and subjectively our approach can mimic an individual’s driving style as well as modulate aggressiveness.

change as a result of a shift within this plane. To select the
embedding, we randomly sample a point along an ellipse on
the plane one standard deviation away from the participant’s
embedding as shown by the gray points in Fig. 5. By doing
so, we are able to keep the degree of aggressiveness constant,
while altering other aspects of driver style. We hypothesize
that Perpendicular will produce similarly aggressive behavior
compared to the participant’s driving but may modulate other
factors not related to aggressiveness.

E. Metrics

Participants in both Study 1 and Study 2 complete the
pre-study surveys. Only participants in Study 2 complete the
post-trial surveys. The surveys detailed below comply with
the design guidelines outlined in Schrum et al. [33] and are
validated from prior work when possible.

Pre-study: The pre-study survey is intended to measure
the participants’ subjective attitudes towards AVs. We collect
demographic information and Big-Five personality informa-
tion via the Mini International Personality Item Pool [12]. To
measure a participant’s aggressive driving style, we utilize the
Aggressive Driving Behavior Scale [19]. We measure other
aspects of driving style via the Multi-Dimensional Driving
Style Inventory [37] and measure experience with cars/racing
games/AVs [32], trust in AVs [23], perception of AVs [38],
and trust in automation [1].

Post-trial: The post-trial surveys capture the participants’
subjective attitudes towards each of the AV conditions. We
measure perceived intelligence [5], competence [9], discomfort
[9], and trust [23]. We modify each of these subscales for
AVs. Additionally, we create two custom scales to measure
perceived similarity and aggressiveness relative to the partici-
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pant’s own driving style.

Objective Measures: In keeping with prior work [6], [26],
we measure various metrics to determine how similar the
driving style of each condition is compared to the participant’s
own driving style. We investigate mean velocity and mean
number of lane changes. We also measure mean headway time
(the distance between the lead vehicle and ego divided by
the speed of the ego when a lane change occurs), minimum
headway distance (the minimum distance between the ego and
lead vehicle before either the ego slows down or changes
lanes), distance headway merge back (the distance between
the following vehicle and ego when merging back), and time
headway merge back (distance headway merge back divided
by the speed when a lane change occurs).

V. RESULTS
A. Analysis of Embedding Space and Aggressive Gradient

We first investigate if our embedding space is capable of
representing and producing diverse driving styles and if the ag-
gressive gradient correlates with relevant objective metrics. To
investigate these questions, we project the learned embeddings
of the test participants onto the line representing the gradient
of aggression. We then analyze how driving style changes as a
result of the position of the embedding along this line. We find
that as we move along the aggressive gradient, the average ve-
locity of the participant increases. The average velocity along
the aggressive gradient ranges from 54.5 mph (in the most
negative direction of the gradient) to 78.56 mph (in the most
positive direction of the aggressive gradient. We find a strong
correlation (r = .49,p = .022) between the embedding’s
position along the aggressive gradient and the average velocity
of the participant. This finding suggests that, in keeping
with prior work [36], velocity is an important component of
aggressiveness within the embedding space. We find similar
results for mean headway time (r = —.46, p = .032), distance
headway merge back (r = —.43,p = .046), mean number of
lane changes (r = .47,p = .028), and time headway merge
back (r = —.48, p = .025). Lastly, we show that a participant’s
subjective aggressive rating of their own driving style strongly
correlates with the position of their learned embedding along
the aggressive gradient (r = .92,p < .001). These findings
provide evidence that our embedding space is capable of
representing diverse driving styles and that aggressiveness
objectively and subjectively increases as we move along the
aggressive gradient.

B. Algorithm Validation

We next investigate MAVERIC’s ability to mimic end users’
driving styles and produce more and less aggressive behavior
in terms of both objective and subjective metrics. In our
following analysis, we verify that data complies with assump-
tions before applying a parametric test. We first investigate
MAVERIC’s ability to accurately mimic driving style. We
find that the accuracy with which we are able to mimic
the participant’s velocity is 93.6%, time headway is 80.2%,
distance headway merge back is 92.4%, mean number of lane
changes is 81.0%, and time headway merge back is 81.8%.

Fig. 6 shows the differences in our objective and subjective
metrics between the participant’s driving style and the behavior
produced by our four conditions. To determine if there are
significant differences between conditions for each of the
metrics, we conduct a repeated measures ANOVA with Holm’s
post hoc correction or a Friedman’s test when the data fails
assumptions. We find that the difference between Mimic and
the participant’s driving is significantly less compared to
Aggressive and Cautious for all objective metrics (p < .001)
(Fig 6a - 6e). We find that Aggressive maintains a higher ve-
locity compared to Mimic. Additionally, as predicted by prior
work [6], [26], Aggressive achieves a lower headway merge
back time and headway merge back distance. Furthermore,
Aggressive commits more lane changes compared to Mimic
despite encountering the same number of leading vehicles.
We find opposite results with the Cautious condition. We
illustrate that the characteristics of our AV driving styles align
with the characteristics indicative of aggressiveness in prior
work, suggesting that our approach can effectively modulate
aggressiveness with respect to one’s own driving style [6],
[26], [36].
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Fig. 7: This figure shows the changes in minimum headway distance as we
move around the ellipse within the plane perpendicular to aggressiveness.
Minimum headway distance was not significantly correlated with aggres-
siveness (V-C) and is modulated by moving in the plane perpendicular to
aggressiveness.

Additionally, as shown in Fig. 6f, we find that participants
rate Cautious as significantly less aggressive compared to
Mimic (p = .002) and Aggressive as significantly more
aggressive (p = .017). Furthermore, we find that Mimic and
Perpendicular are rated as similarly aggressive compared to
the participant’s own driving. Our objective and subjective
results together support our hypotheses that 1) our
approach is capable of mimicking driving style and 2),
by shifting a participant’s learned embedding along the
aggressive dimension, MAVERIC produces objectively
and subjectively more aggressive and cautious behavior.
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Independent Dependent Statistic p-value
Conscientious | M-C Competence | p(22) = —.71 | p < .001
Conscientious | M-C Intelligence | p(22) = —.5 | p=.012
Conscientious | M-C Discomfort | r(22) = .46 | p=.024
Conscientious M-C Trust p(22) = —.62 | p=.0011
Conscientious | M-A Competence | p(22) = —.51 | p = .011
Conscientious | M-A Intelligence | p(22) = —.51 | p=.01
Conscientious | M-A Discomfort | 7(22) = .45 | p=.028
Conscientious M-A Trust p(22) = —.48 | p=.0018
Openness M-A Discomfort | p(22) =.49 | p=.015
Similarity Trust p(94) =.16 | p=.001
Similarity Intelligence p(94) = .34 | p < .001
Similarity Competence p(94) = .27 | p < .001
High-Velocity | M-A Intelligence | p(94) = —.58 | p = .0031
High-Velocity | M-A Competence | 7(22) = —.44 | p = .03
High-Velocity M-A Trust r(22) = —.43 | p=.036

TABLE I: This table shows our correlation analysis. M represents Mimic, A represents Aggressive, and C represents Cautious.

C. Maintaining Other Aspects of Driving Style

One of the goals of our approach is to modulate aggres-
siveness while maintaining other aspects of driving style. If
moving along the gradient of aggressiveness modulates the
aggressive aspect of the driving style, then we hypothesize that
moving within the plane perpendicular to aggressiveness will
modulate other aspects of driving style unrelated to aggressive-
ness. Interestingly, we found that minimum headway distance
and fraction of time in the left lane were not significantly
correlated with the embeddings position along the aggressive
gradient. Moving along the gradient does not significantly alter
minimum headway distance or fraction of time in the left lane,
suggesting that, in our learned embedding space, these factors
do not play a large role in aggressiveness. Therefore, we
predict that these aspects of driving will instead be modulated
when we move perpendicular to the gradient of aggressiveness.
To test this hypothesis, in Fig 7 we plot the difference in
minimum headway distance between Mimic and Perpendicular
versus the position around the ellipse that is depicted in
Fig. 5. We find that minimum headway distance does in fact
correlate with position around the ellipse (r = .68, p < .001).
We additionally find that the fraction of time in the left
lane significantly correlates with position around the ellipse
(r=—.47,p = .025).

We note that minimum headway distance is often associated
with aggressiveness [41]. However, this is most often the case
when the ego vehicle is not capable of changing lanes and is
instead forced to following a leading vehicle. We hypothesize
in our work that minimum headway distance is not correlated
with aggressiveness because the participant can choose to
change lanes at any point to pass a slower driver and therefore
is not forced to maintain a following distance if they do not
want to.

D. Homophily

As shown in Fig. 8 not all participants preferred the
Mimic condition. More than 20% of participants preferred
the Aggressive condition and more than 25% of participants
preferred the Cautious condition. To explain this finding, we
next explore the factors that modulate the effect of homophily
(Table I) to determine why some participants prefer a
driving style different from their own. First we investigate
if a participant’s personality impacts their preference via a
correlation analysis. As shown in Table I, we find a strong
correlation between conscientiousness (i.e., the extent to which
one is responsible and dependable [42]) and the difference
between a participant’s perceived competence of Mimic
compared to Cautious, suggesting that individuals higher in
conscientiousness prefer a more cautious style to their own.
This finding may explain why 62.5% of participants rated
Mimic as less than or equal in competence relative to Cautious.
To further support the hypothesis that conscientiousness
influences the effect of homophily, we find that participants
who are higher in conscientiousness rate a more cautious style
as significantly more intelligent, comfortable, and trustworthy
compared to Mimic and significantly more competent, intel-
ligent, comfortable, and trustworthy compared to Aggressive.

We additionally find that openness (the degree to which one
is broad-minded [42]) correlates with the difference between
a participant’s comfort with Aggressive compared to Mimic.
This finding suggests that those who are more open to new
experiences may prefer a more aggressive AV and may explain
why 37.5% of participants rated Aggressive as causing greater
comfort compared to Mimic.

Prior work suggests that perceived similarity to one’s own
driving style is an important aspect of AV acceptance [6]. To
investigate this claim, we conduct a correlation analysis be-
tween perceived similarity and an end-users preference for the
AV. We find a positive correlation between perceived similarity
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Fig. 8: This figure shows the percent of participants who rated Aggressive and Cautious as better than Mimic in terms of each of our subjective metrics.

and trust, intelligence, and competence. This finding suggests
that perceived similarity should be taken into consideration
when optimizing AV driving style.

Prior work demonstrated that one’s own driving style may
impact preference for an AV’s style (e.g., more aggressive
drivers prefer relatively less aggressive AVs) [6], [43]. To
investigate this question further, we conduct a correlation
analysis between the dimensions of the Multi-Dimensional
Driving Style Inventory [37] and preference for Aggressive
and Cautious compared to Mimic. We find that participants
who report a high-velocity driving style rate Aggressive to
be significantly higher than Mimic in intelligence, compe-
tence, and trustworthiness. This findings suggests that high-
velocity drivers may prefer a more aggressive AV. Due to the
contradictory findings with prior work, we aim to conduct a
deeper analysis into how the specific dimensions of one’s own
aggressive style impact the effect of homophily in future work.

We note that the results we present are an exploratory
analysis and we do not claim to demonstrate a causal
relationship between the subjective factors discussed above
and homophily. However, our findings suggest that these
factors warrant further investigation in future work. Overall,
our findings demonstrate that personality traits, perceived
similarity, and high-velocity driving style may be
important factors which influence the effect of homophily.

VI. DISCUSSION

Our results demonstrate the our MAVERIC framework
is capable of both mimicking and modulating driving style
by learning an embedding representing an end-user’s own
driving style. Given other relevant factors related to end-
user characteristics, we can then tune this driving style by
moving along the gradient of aggression to better match the
preference of the end-user. Thus, while other approaches either
directly mimic the end-user’s own driving style or do not
take into consideration the end-user’s driving style at all, our
approach is capable of integrating both information about an

end-user’s own driving style and subjective characteristics that
are predictive of the optimal AV driving style.

In our analysis, we show that our learned embedding space
captures salient aspects of driving style and that the gradient of
aggressiveness correlates with objective and subjective aggres-
sive metrics. An interesting aspect of our aggressive dimension
is that this representation of aggressiveness is not based on a
pre-defined or hand-crafted heuristic but is instead based upon
end-users’ perception of what is meant by aggressive driving.
By defining aggressiveness via this subjective metric, we are
able to produce driving styles that are perceived to be more
aggressive or more cautious by end-users rather than relying
on an expert’s definition which may not align with end-users’
perception.

We demonstrate that our approach successfully mimics
(p < .001) as well as modulates (p < .001) driving style
with relatively little training data (10 minutes per end-user).
Characterizing driving style via a personalized embedding
and learning where a driver’s style falls within the larger
population of drivers improves data-efficiency. While we found
that a three-dimensional embedding space was sufficient to
represent relevant aspects of driving style in our two-lane
highway domain, we hypothesis that increasing the size of
the embedding space will enable MAVERIC to capture ad-
ditional facets of driving style that may appear in more
complex domains. We leave to future work an investigation
of MAVERIC’s performance in these more complex scenarios
and the relationship between scenario complexity and the
optimal dimensionality of the embedding space.

In our analysis of the effect of homophily, we determine
the subjective factors that future work should consider when
optimizing driving style. We show that simply mimicking an
end-user’s own driving style is often not preferred and that
certain subjective characteristics may explain the discrepancy
between an end-user’s own driving style and their preferred
AV driving style. By conducting a correlation analysis, we
uncover several characteristics that impact homophily. We
find that personality (p < .001) should be considered when
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determining the optimal driving style and that specifically,
conscientiousness and openness to experience are important
factors. Additionally, participant’s perception of their own
driving style, e.g. self-reported high-velocity driving style
(p = .0031) may influence an individual’s preference for
a more aggressive driving style. We additionally find that
perceived similarity (p < .001) is a relevant factor as supported
in prior work [6]. These findings provide us with insight
into what factors should be considered when determining
exactly how much and in which direction to shift an end-
user’s personalized embedding along the aggressive gradient
so as to optimize driving style.

VII. FUTURE WORK ON OPTIMIZING DRIVING STYLE VIA
MIMICRY AND MODULATION

So far, we have demonstrated that MAVERIC can both
mimic and modulate driving style and that several key char-
acteristics of end-users influence the effect of homophily. In
future work, we aim to take our approach a step further and
characterize the relationship between these relevant subjective
metrics and the optimal location of the end-user’s personalized
embedding along the gradient of aggression. By characterizing
this relationship, we can fine-tune the driving style produced
by the AV and determine how much and in what direction to
shift an end-user’s personalized embedding along the gradient
of aggression to as to optimize the driving experience for the
end-user.

In our current work, we focus on developing a framework
that is capable of both mimicking and modulating driving style
and leveraging this framework to study factors that influence
preference. In future work, we aim to characterize the rela-
tionship between these factors and the optimal location of the
embedding along the gradient of aggression so as to determine
the optimal driving style for an end-user. We then aim to
compare this driving style relative to previous approaches. We
hypothesize that our framework, which accounts for both an
end-user’s own driving style and other relevant latent factors
will be able to produce a driving style that is more preferred
by end-users compared to prior work.

We chose to modulate the level of aggressiveness because
prior work has indicated that this dimension has a large
impact on end-user preference [6], [16], [43] However, we
hypothesize that aggressiveness is not the only aspect of
driving style that can be modulated with MAVERIC and
that other dimensions of driving style may be important to
consider. We predict that we can modulate various other
aspects of driving style as long as we have access to the
appropriate supervision signal when learning the personalized
embedding. For example, we could measure an end-user’s
preference for environmentally friendly driving and utilize
this metric to create an environmentally friendly dimension
within embedding space. Additionally, preference for driving
style may change over time as the end-user becomes more
comfortable with the AV or may change due to circumstance
and environmental factors (e.g., inclement weather). In future
work, we plan to investigate how to adapt driving style to
account for these factors by conditioning the personalized
embedding on relevant circumstantial variables.

VIII. LIMITATIONS

A limitation of our work is that we only investigated our
approach in a highway domain. In future work, we plan to
investigate MAVERIC’s abilities to learn driving styles in
domains involving more traffic and the potential for more
complex decision making. More complex domains will likely
require additional training data to capture the various aspects
of driving style. In future work we will investigate training our
approach from large offline datasets [10] which we hypothe-
size will enable MAVERIC to generalize to more complex,
real world scenarios.

Additionally, we only recruited internal participants for
Study 1. However, despite this limitation, our study comprises
a more diverse population pool than many studies in human-
robot interaction which typically recruit from a pool of college
students [22]. Another limitation is that the perceived similar-
ity and aggressiveness surveys are not verified in prior work.
Because we only conduct a correlation analysis, we cannot
conclude that the subjective factors are causally related to
homophily, only that they are correlated which is a limitation
of our findings. However, our results suggest that these factors
are worthy of further investigation in future work and as
discussed in VII we aim to conduct a study to quantify the
relationship between these factors and the effect of homophily.

IX. CONCLUSION

We have presented MAVERIC, a novel framework for per-
sonalizing driving style that uses mimicry as an initial starting
point and can fine-tune style by modulating aggressiveness. We
demonstrated MAVERIC’s ability to mimic an end-user’s own
driving style as well as adjust the level of aggressiveness while
maintaining other aspects of style. Furthermore, we employed
our framework to study the effect of homophily and showed
that preference for one’s own style is modulated by personality,
self-reported driving style, and perceived similarity. To our
knowledge, ours is the first framework to combine subjective
metrics (i.e., the ADB survey) with end-user training data to
produce a personalized high-level AV controller. Our results
indicate that personalizing AV control is a research area that
merits further investigation. We believe that our work provides
an important stepping stone towards increasing personalization
of AV driving style and ultimately improving end-user expe-
rience .
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