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Abstract
Adaptive brain stimulation can treat neurological
conditions such as Parkinson’s disease and post
stroke motor decits by inuencing abnormal neu
ral activity. Because of patient heterogeneity, each
patient requires a unique stimulation policy to
achieve optimal neural responses. Modelfree re
inforcement learning (MFRL) holds promise in
learning effective policies for a variety of simi
lar control tasks, but is limited in domains like
brain stimulation by a need for numerous costly
environment interactions. In this work we intro
duce Coprocessor Actor Critic, a novel, model
based reinforcement learning (MBRL) approach
for learning neural coprocessor policies for brain
stimulation. Our key insight is that coprocessor
policy learning is a combination of learning how
to act optimally in the world and learning how
to induce optimal actions in the world through
stimulation of an injured brain. We show that our
approach overcomes the limitations of traditional
MFRL methods in terms of sample efciency and
task success and outperforms baseline MBRL ap
proaches in a neurologically realistic model of an
injured brain.

1. Introduction
A neural coprocessor is a form of braincomputer interface
(BCI) that can transmit signals to and from the brain (Rao,
2019; Oehrn et al., 2023). These interfaces can be used
to treat a variety of neurological conditions by inuenc
ing abnormal neural activity (Lozano et al., 2019; Little
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et al., 2013b). In patients who suffer from conditions such
as Parkinson’s disease and dystonia, brain stimulation has
the ability to steer neural activity towards activity regions
which manifest in reduced disease symptoms (Hu & Stead,
2014; Groiss et al., 2009). Adaptive brain stimulation can be
employed not just to guide neural activity towards specic
activity patterns but can also aid impaired patients in accom
plishing external task objectives (Bryan et al., 2022; Cunha
et al., 2015). Stroke patients are one patient population that
can benet from this aspect of brain stimulation. Stroke
patients suffer injury to the brain that often results in loss of
motor control and an inability to complete basic tasks, such
as reaching for and grasping an object (Hatem et al., 2016).
Stroke patients often struggle with these seemingly simple
motor tasks due to strokeinduced lesions in the brain that
can interrupt the propagation of neurological signals within
and between cortical modules (Ingwersen et al., 2021; Choi
et al., 2023). Due to the resultant motor decits, a patient
may recognize the target location and intend to move their
arm to the perceived position, but struggle to do so (Choi
et al., 2023). Adaptive brain stimulation exhibits potential
for reducing motor impairment and restoring lost function
via adaptive stimulation, enabling these patients to operate
more effectively in the world (Elias et al., 2018; Ganguly
et al., 2022).

In this work, we investigate the development of neural co
processors to deliver adaptive brain stimulation for reha
bilitation using an in silico model of brain injury. Neural
coprocessors rely on articial intelligence techniques to
learn a brain stimulation policy that appropriately shapes
neural activity based upon the current state of the patient
(Rao, 2019). An effective coprocessor policy can compen
sate for lost mobility and paretic motor decits poststroke
(Bryan et al., 2022). However, there are several challenges
in developing an effective coprocessor policy. Because of
the heterogeneity of patients’ brains, their disease manifesta
tion, and the location of the stimuli, the optimal coprocessor
policy is unique for each patient (Visanji et al., 2022). Fur
thermore, due to the complexity of the brain, closedloop
coprocessor policies are difcult to handengineer (Oehrn
et al., 2023). Instead, individualized coprocessor policies
may be learned through interaction with the patient to en
sure that the coprocessor aligns seamlessly with the unique

1



Coprocessor Actor Critic: Model-Based RL For Adaptive Brain Stimulation

Learn Qψ Learn and updatêf ϕ
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RL Agent

r, s
̂f ϕ
brain(s, ā)
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Figure 1. Overview of our framework. We rst learn the Qfunction, Qψ , for world actions, a, via a biomechanically realistic simulator.
We then learn the mapping, F ϕ

brain, from coprocessor actions, ā, to world actions. Simultaneously, we update Qψ to account for the altered
MDP.

characteristics of the patient’s brain and condition. Due to
the necessity for online learning, adaptive brain stimulation
poses a compelling paradigm which can benet from the
application of reinforcement learning (RL) techniques.

Modelfree reinforcement learning (MFRL) has shown
promise for learning highquality policies in many different
control tasks that resemble brain stimulation (Huang, 2020).
However, MFRL often requires numerous environment inter
actions to learn a sufciently good policy. When stimulating
the brain, interactions with patients are costly, and thus,
this domain requires an approach which can quickly learn
a policy with few patient interactions. Moreover, inappro
priate stimulation can produce negative sideeffects such
as cognitive disturbances, dyskinesia, and mood changes,
further necessitating efcient learning algorithms (Ashmaig
et al., 2018; Buhmann et al., 2017). To this end, we intro
duce a novel modelbased reinforcement learning (MBRL)
approach for coprocessor stimulation that outperforms state
oftheart MFRL and MBRL approaches in terms of both
sample efciency and task success.

Our key insight is that we can minimize online patient in
teraction by breaking coprocessor policy learning into two
phases: 1) learning how to act optimally in the world, and
2) learning how to achieve optimal world actions via brain
stimulation. With access to a biomechanically realistic simu
lator, we can learn the former without any patient interaction,
enabling us to focus online interactions on learning the map
ping from coprocessor stimulations to world actions. By
separating these two components, we are able to improve
the sample efciency and performance of the coprocessor.
An overview of our approach is presented in Figure 1. We
dene world actions as the tangible movements performed

by the patient in their environment, distinguishing them
from actions (i.e., stimulations) initiated by the coprocessor.

To learn how to act optimally in the world, we rely on a
biomechanical simulator. Various physics based simula
tors (e.g., Caggiano et al. (2022) and Delp et al. (2007))
have been developed that enable the physiologically realis
tic simulation of human biomechanics. These simulations
are capable of modeling both complex human physiology
and dynamic environment interactions, such as the com
plexities encountered in our example reaching task. We
leverage a biomechanical simulator to learn the value of a
human executing a world action (e.g., moving their arm) in
a given state (e.g., arm joint positions), for a given task ob
jective (e.g., reaching a target location). That is, we employ
a simulator to learn the Qfunction for world actions.

While the mechanisms involved in executing a world action
will be similar for every individual and can therefore be reli
ably modeled in simulation, because of the complexity and
heterogeneity of the human brain, the effect of coprocessor
stimulation cannot be as readily predicted. Instead, we must
learn how to achieve optimal world actions via stimulation
in an online fashion. To efciently learn how coproces
sor stimulations map onto world actions, we leverage the
simulatorderived Qfunction to guide stimulation sampling
during online learning, thus focusing model learning on
highvalue regions of the worldaction space. Because not
all world actions will necessarily be realizable by the injured
brain, the learned Qfunction may be overoptimistic. To
solve this problem, we iteratively update the Qfunction as
we learn the brain model. We demonstrate that this method
is orders of magnitude more efcient than learning a stim
ulation policy from scratch via standard MFRL. Once this
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mapping is learned, our coprocessor policy selects stimu
lations that produce world actions of maximum value, as
dened by the simulatorderived Qfunction.

We evaluate our approach in standard continuous control
tasks as well as a novel, physiologically and neurologically
realistic stroke domain. We demonstrate that our approach
learns a better policy in fewer interactions compared to
baseline MFRL and MBRL approaches. Additionally, we
show that our approach is able to better aid the patient in
accomplishing a given task during the online learning phase
compared to baselines. With this work, we hope to set the
groundwork for implementing RL solutions for adaptive
brain stimulation and to pave the way for RL researchers to
further study this problem. We contribute the following:

1. A novel, modelbased RL approach for learning a neu
ral coprocessor policy for closedloop adaptive brain
stimulation.

2. A physiologically and neurologically realistic RL
benchmark environment for adaptive brain stimulation
for strokerelevant tasks.

3. Results showing improved sample efciency and
higher training and evaluation reward relative to MFRL
and MBRL baselines.

2. Related Work
Current clinical applications of brain stimulation are open
loop, i.e., nonadaptive (Khanna et al., 2021; Ganguly et al.,
2022; Lu et al., 2020b). For instance, when selecting deep
brain stimulation (DBS) parameters for treating Parkinson’s
in clinical settings, the surgeon performs a trial and error
search to determine the set of stimulation parameters that
best treat patient symptoms (Ghasemi et al., 2018). How
ever, propelled by advances in medical technology and a bet
ter understanding of neurophysiological signals, closedloop
coprocessors are emerging as a new and promising paradigm
(Frey et al., 2022). Closedloop DBS relies on feedback sig
nals either in the form of decoded brain readings or other
external state information to dynamically adjust stimula
tion and deliver more precise interventions for patients. One
challenge in closedloop brain stimulation is the formulation
of an effective control policy. Various methods have been
proposed to develop adaptive DBS policies based on patient
state information (Little et al., 2013a; BronteStewart et al.,
2020; Oehrn et al., 2023). For instance, Little et al. (2013a)
proposed an approach that modulates stimulation parame
ters based upon a userdened threshold of local evoked
potentials. However, these manually crafted strategies often
fall short of capturing the intricate interplay between DBS
and the brain, and are difcult to personalize for individual
patients.

Reinforcement Learning for Brain Stimulation: An al
ternative to handengineering policies is to leverage rein
forcement learning techniques and learn a stimulation policy
via data collected through patient interactions (Schrum et al.,
2022; Gao et al., 2023; Coventry & Bartlett, 2023). Sev
eral prior works have explored RL methods for closedloop
brain stimulation (Lu et al., 2020a; Gao et al., 2023). Gao
et al. (2023) investigated employing a MFRL approach with
ofine warmstarting to learn an effective stimulation pol
icy for Parkinson’s patients. Similarly, Lu et al. (2020a)
proposed an actorcritic method and demonstrated its perfor
mance in simulation. However, such MFRLmethods require
a large number of patient interactions and thus, while effec
tive in simulation, MFRL is difcult to deploy in the real
world (DulacArnold et al., 2021).

Model Based Reinforcement Learning: An alternative
to MFRL is ModelBased Reinforcement Learning (MBRL).
MBRL reduces training time and improves learning ef
ciency by utilizing a predictive dynamics model to learn an
effective policy (Valencia et al., 2023; Janner et al., 2021).
MBRL can typically be broken down into two steps: 1) dy
namic model learning followed by 2) integration and plan
ning (Moerland et al., 2022). The downside of MBRL is that
the model used for planning may be inaccurate, thus produc
ing suboptimal plans (Abbeel et al., 2006). Our approach
minimizes this risk by leveraging a simulationderived Q
function to guide model learning and sample stimulations
that produce highvalue environment actions, enabling us to
robustly and efciently learn the brain dynamics model.

3. Problem Setup
We consider a world MDP with continuous state and action
spaces dened by the tuple (S , A, P , R). S denes the
state space and A the world action space. P : S ×A → ∆S
denotes the probability distribution of the next state when
action a is taken at state s. R : S × A → R, denes the
reward function.

Using this MDP to describe the world, we construct a second
MDP from the perspective of the coprocessor stimulations.
We assume there is some (potentially nondeterministic) map
ping Fbrain : S×Ā → A that converts stimulations to the re
sulting world actions in a statedependent fashion. We then
dene the augmented coprocessor MDP,M = (S, Ā, P , R)
where Ā is the space of possible coprocessor stimulation
actions and the probability distribution over the next state is
dened in Eq. (1).

P (s′ | s, ā) = E

P

s′ | s, Fbrain(s, ā)


. (1)

In Eq. (1) the expectation is over the stochasticity of Fbrain.

The objective is to learn a policy π(āt | st) that maximizes
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the task reward in the coprocessor MDP,M . In simulation
we will not have access to the true brain model Fbrain, so we
will use a learned model F ϕ

brain, yielding a simulated version
of the coprocessor MDP, M = (S, Ā, P ,R) (Eq. (2)).

P (s′ | s, ā) = E

P

s′ | s, F ϕ

brain(s, ā)

. (2)

4. Methodology

Algorithm 1 Coprocessor Actor Critic (CopAC)

Require: world MDP M = (S,A, P,R), s0 ∼ p0
Require: stimulation space Ā, injured brain Fbrain
1: initialize F ϕ

brain
2: while access to simulator do
3: rollout π in M with experiences (s, a, r, s′)
4: t Qψ(s, a) with Equation (4)
5: end while
6: while access to injured brain do
7: rollout π̄ in M with experiences (s, ā, r, s′)
8: a ← Fbrain(s, ā)

9: t F ϕ
brain(s, ā) to a

10: while not converged do
11: rollout π̄ in M with experiences (s, ā, r, s′)
12: â ← F ϕ

brain(s, ā)
13: t Qψ(s, â) using Equation (6)
14: end while
15: end while
16: return π̄

We now present our approach for efciently learning a
patientspecic coprocessor policy. Our key insight is that
we can separate the policy learning into learning the value
of world actions followed by learning to produce highvalue
actions through stimulation.

Our approach is detailed in Algorithm 1 and consists of
three steps: 1) training a worldaction value model, Qψ , 2)
training the brain model, F ϕ

brain, and 3) updating the world
action value model, Qψ . We alternate between steps 2 and
3 during online patient interaction.

4.1. Training world-action value model

Our goal is to leverage a biomechanical simulator to simu
late the effect of a world action a on a world state s, given
the world MDP, M . Via this simulation, we can learn a
world policy π for how to act optimally in the world without
having to directly interact with the patient. We assume that
the optimal world policy is consistent across patients (e.g.,
though their neural activity may differ, patients will reach
the same target object by taking the same world actions)
and can be readily simulated via the biomechanical simu
lator. We leverage this simulator to derive the Qfunction,
Qψ for the optimal world policy, π (Alg. 1 lines 25). The

world policy and Qupdate are dened in Equation (3) and
Equation (4) respectively.

π(s) ≜ argmax
a∈A

E

Qψ


s, a


(3)

Qψ(s, a) ← R(s, a) + γmax
a′∈A

E

Qψ


s′, a′


(4)

In our work, we use Soft ActorCritic (SAC) (Haarnoja
et al., 2018) to learn Qψ . However, this could be substituted
for any standard actorcritic or Qlearning approach. We
note that if a biomechanical simulator is not available for a
given task, the Qfunction can be equivalently learned via
ofine RL on a dataset of human biomechanical rollouts in
the environment. Importantly, through either a simulator or
ofine data, our worldaction value model learns from only
the biomechanical action output of a brain without relying
on access to neural activity of the brain itself.

4.2. Training Brain Model

Given the world policy dened in Eq. (3), our objective is
to next learn to transform coprocessor actions into world
actions. Because of the heterogeneity and complexity of the
human brain, this process cannot be easily simulated and
must instead be learned online. We utilize the Qfunction
learned in the previous step to guide online learning (Alg.
1 line 7). We aim to select stimulations ā that produce
world actions of maximum value, thereby focusing learning
of F ϕ

brain on highvalue regions of A. After each patient
interaction, we collect an experience, (s, ā, r, s′), which we
use to update F ϕ

brain. Our sampling strategy is dened in
Equation (5). After each interaction, we retrain F ϕ

brain based
upon our collected set of experiences (Alg. 1 line 9).

π̄(s) ≜ argmax
ā∈Ā

E

Qψ


s, F ϕ

brain(s, ā)


(5)

We update the brain model via the meansquared error loss
between the predicted world action, â and the ground truth
world action a. To effectively capture the complexity of
the relationship between stimulations and world actions, we
adopt a structure for F ϕ

brain(s, ā) akin to the model presented
(Bryan et al., 2022). In Bryan et al. (2022), the authors lever
age a neural network to learn the mapping from stimulations
to world actions from a monkey stroke dataset and show
that this model is able to effectively capture the effects of
stimulation on the brain

4.3. Updating world-action value model

The remaining issue to correct is that Equation (5) maxi
mizes Qψ under the model F ϕ

brain. Unfortunately, F
ϕ
brain will

not be a perfect model of the effects of stimulation and even
if it were, not all actions a ∈ A are necessarily realizable by
stimulation ā. Thus, Qψ will be myopically overoptimistic
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when predicting Qvalues from the perspective of the copro
cessor agent. To solve this problem, we must continuously
recalibrate the Qfunction based on which actions can be
realized by stimulation. We perform this calibration in the
simulation MDP M using the update in Equation (6). This
procedure is illustrated in Alg. 1, lines 1014.

Qψ(s, a) ← r + γmax
ā∈Ā

E

Qψ(s′, F ϕ

brain(s
′, ā))


(6)

In summary, we rst train the worldaction value model Qψ

ofine, and then iteratively update it while also learning
F ϕ
brain. Repeating the last two stages (training brain model

and updating worldaction value model) enables us to learn
an effective coprocessor policy via minimal interactions
with the patient. We call our approach Coprocessor Actor
Critic (CopAC) and demonstrate its performance in compar
ison with other RL methods in the next section.

5. Experiments
To aid a patient in accomplishing a task such as reaching
and grasping an object, a coprocessor must learn a patient
specic stimulation policy in both an efcient and effective
manner. Thus, the goal of our experimental evaluation is
to 1) analyze the sample efciency of CopAC compared
to stateoftheart MFRL and MBRL baselines and 2)
investigate the reward attained by CopAC in comparison
to these baselines.

We compare CopAC to the popular MFRL approach, Soft
ActorCritic (SAC) (Haarnoja et al., 2018), which combines
actor and critic networks with an entropy regularization
term, promoting exploration in a stable and efcient
manner. We choose to compare to SAC because actorcritic
algorithms have been employed in prior work in learning
a policy for closedloop brain stimulation (Gao et al., 2023;
Lu et al., 2020a). We additionally baseline against the
MBRL approach ModelBased Policy Optimization (Janner
et al., 2021), which trains a model of the environment and
uses both real experience and simulated experience from
the model to update its policy. To assess the effectiveness
of our sampling policy and the importance of updating the
worldaction value model, we conduct an ablation exper
iment and compare against CopAC with a random sampling
policy (instead of maximizing the Qfunction) as well as
CopAC without updating the worldaction value model.

5.1. In Silico Evaluation Environments

Evaluating novel RL approaches for adaptive brain stimu
lation in vivo is risky for patients and may waste patients’
valuable time if the approach is not successful. Thus, it is
common practice to rst conduct experiments in silico (i.e.,
in simulation) to verify the efcacy of the approach before
deploying in patients (Little et al., 2013a; Ashmaig et al.,

Figure 2. This gure shows the brain stimulation domain for the
MyoSim Arm Reach task. We model the biomechanics of the
reaching tasks using the MyoSuite physics simulator (Caggiano
et al., 2022). The brain of a stroke patient is modeled via the
approach described by Michaels et al. (2020) and consists of the
anterior intraparietal area (AIP), ventral premotor cortex (F5), and
primary motor cortex (M1) modules. The coprocessor applies
stimulation to the motor cortex (M1) which modies the world
action of the patient.

2018). In our experiments, we investigate the ability of our
method to restore the functionality of a synthetic injured
brain across a range of simulated control tasks. The goal in
each environment is to learn a coprocessor control policy to
provide the appropriate stimulation to the brain to recover
function and improve performance on the tasks postinjury.
Below we discuss the control tasks and the synthetic brain
models employed in our in silico experiments.

Physiologically and Neurologically Realistic Stroke Do-
main: Drawing on prior work in neurophysiological and
biomechanical modeling (Michaels et al., 2020; Caggiano
et al., 2022), we introduce a novel simulation domain for
evaluating adaptive brain stimulation policies in stroke pa
tients (Fig. 2). Such an in silico evaluation requires both
a neurologically realistic human brain model of a stroke
patient and a highdelity biomechanical simulator. To
simulate the biomechanics of the human musculoskeletal
system, we rely on MyoSuite (Caggiano et al., 2022), a
cuttingedge simulator for biomechanical control problems
based on the MuJoCo physics engine. The action space con
sists of individual muscle activations and the observation
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Figure 3. Evaluation results for CopAC compared to SAC, MBPO, and ablated CopAC. The dashed line represents the reward obtained by
the healthy brain.

space consists of joint angles.

We simulate the injured brain of a stroke patient using the
cortical brain model developed by Michaels et al. (2020).
The backbone of this model is a recurrent neural network
that mimics the modular structure of the anatomical circuit
encompassing the visual cortex, the anterior intraparietal
area (AIP), the ventral premotor cortex (F5), and the primary
motor cortex (M1). Michaels et al. (2020) show that the
emergent neural dynamics of this model correspond to the
neural responses exhibited in a nonhuman primate’s brain.
Our insight is that we can employ standard RL techniques to
train this brain model to accomplish various physical tasks in
the MyoSuite biomechanical simulation, thus establishing
a realistic pipeline between brain motor control signals,
muscle kinematics, and biomechanical movement. Michaels
et al. (2020) additionally demonstrate that zeroing a portion
of the weights in the desired brain structure can reproduce
behavioral decits caused by strokeinduced brain lesions.
By lesioning the simulated brain following the protocol
detailed by Michaels et al. (2020), we induce strokelike
neurological and physiological behavior.

This method can be employed to simulate stroke patient
control strategies across various functional benchmark tasks
(e.g., inhand object manipulation, object grasping, ambu
lation, visualspatial acuity, etc.). We choose to evaluate
CopAC on a reaching task that requires goaldirected func
tional movement (Fig. 2). Such spatial reaching tasks,
clinically known as taskrelated reaching training, are com
mon benchmark tasks in which stroke patients often exhibit

suboptimal control strategies (Thielman et al., 2004). We
also evaluate CopAC on a spatial pose task in which the goal
is to move the ngers to target locations. This task requires
ne motor skills and emulates activities such as grasping an
object that can be challenging for stroke patients to execute.
(Buhmann et al., 2017).

Given a neurophysiologically realistic model of a stroke
patient, the last step is to simulate the effects of closed
loop stimulation on the lesioned brain. Bryan et al. (2022)
introduce a method to spatially and temporally simulate
brain stimulation in the primary motor cortex to approximate
the effect of in vivo stimulation. We rely on this approach to
simulate the coprocessor’s effect on a stroke patient’s brain.

Standard Continuous Control Tasks: We additionally
evaluate CopAC on a variety of standard continuous control
tasks from the OpenAI Gym benchmark suite (Brockman
et al., 2016). Although the nature of these tasks is distinct
from the intricate control of human movement that is typical
of adaptive brain stimulation tasks, our objective in scruti
nizing our approach within these domains is twofold: rstly,
to showcase its adaptability in handling a variety of com
plex tasks with varying state and action space dimensions,
and secondly, to provide a benchmark comparison against
previous approaches in wellestablished domains.

For OpenAI Gym benchmark tasks, we simulate a control
policy generated by the brain of a stroke patient by rst
training a neural network policy using standard RL tech
niques to solve each Gym environment. We then “injure”
the policy by zeroing random weights between two hidden
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layers in the network. Coprocessor stimulation is applied
by additively modifying the values of randomly selected
neurons in the layer following lesion.

5.2. Evaluation Reward

Figure 3 shows a comparison of the evaluation reward after
each episode of online training for each of the approaches.
The dashed line represents the performance of an unaffected
or “healthy” brain, without any lesion. We note that we do
not necessarily expect a stimulation policy to be capable
of achieving healthy performance, as the severity of the
lesion may limit the brain’s ability to reach healthylevel
performance. Instead, the primary objective is to provide
stimulation to assist the patient in attaining a reward as close
to a healthy level as possible.

We average our results across a set of injuries ranging from
0% to 100% lesion of the motor cortex for 25 episodes of
online interaction. We limit the number of episodes to 25
as requiring a stroke patient to perform a greater number of
task repetitions would likely be too physically and mentally
demanding. Despite this tight sampling constraint, CopAC
is able to quickly learn an effective strategy in less than
25 episodes in each of the control environments. On the
contrary, SAC often struggles to improve performance sig
nicantly beyond random sampling within the limited time
frame. Even when SAC is able to achieve a strategy compa
rable to CopAC, it typically requires double the number of
interactions to do so. We nd that MBPO outperforms SAC
in terms of evaluation reward. In environments in which the
model is simpler to learn such as MyoSim Reach and Pendu
lum, MBPO performs on par with CopAC. However, when

dealing with more complex environments such as MyoSim
Pose in which each nger must be precisely manipulated,
MBPO learns much slower than our approach.

We next investigate the importance of the various compo
nents of CopAC via an ablation study. We compare the
evaluation rewards of CopAC with two modied versions:
CopAC (Q Update) and CopAC (Q Update, Q Max). Co
pAC (Q Update) does not update the worldaction value
model during online learning. We anticipate that not includ
ing this update will only impact performance when not all
world actions are realizable due to brain lesioning. We see
the most prominent benet of updating the worldaction
model in the Swimmer domain. We also see an improve
ment in Reacher and a small improvement towards the end
of the 25 episodes in several other domains.

We next investigate the benet of our sampling strategy
which selects the stimulation that maximizes Qψ , given
our current knowledge of F ϕ

brain. To do so, we compare
CopAC to a random sampling strategy without updating
the world actionvalue model, i.e., CopAC (Q update, Q
max). Because we are not focusing sampling on highvalue
regions of the world actions space, we expect CopAC (Q
update, Q max) to learn more slowly compared to CopAC.
We nd that a random sampling strategy underperforms in
the MyoSim Pose domain compared to CopAC’s strategic
sampling strategy and also produces lower evaluation reward
in the Swimmer, Reacher, Pendulum, and Inverted Double
Pendulum domains.
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Figure 5. Training results for CopAC compared to SAC, MBPO, and ablated CopAC. The dashed line represents the reward obtained by
the healthy brain.

5.3. Training Reward

Ideally, a coprocessor should simultaneously provide stim
ulation that maximally assists the stroke patient given its
current model of the patient while continuously rening
and updating its policy. In the previous section, we estab
lished that our approach learns a superior policy with fewer
samples than the baseline methods. Here we investigate
if, during policy learning, we are able to achieve a higher
training reward compared to baselines. Training reward is
an important metric in our brain stimulation domain because
it indicates how well an approach is able to aid a patient
in completing the desired task during policy learning. Fig.
5 shows the training reward summed over each episode of
online interaction. Due to our sampling strategy which se
lects stimulations that produce highvalue world actions, our
approach is able to achieve high task reward during learning.
This means that CopAC can successfully assist the patient
in accomplishing a given task during the learning phase. In
contrast, MBPO and SAC achieve a signicantly lower train
ing reward. CopAC (Q update, Q max) performs poorly
in all environments due to the random sampling policy.

6. Discussion
Our ndings demonstrate the advantage of MBRL over
MFRL in the domain of adaptive brain stimulation.
Leveraging a model of the patient’s biomechanics enables
CopAC to reduce the number of interactions and achieve
more than a 10x benet in sample efciency in many

environments. This improved sample efciency means that
patients will be able to quickly benet from a highquality
stimulation policy. We nd that the benet of our approach
is particularly apparent in domains that require complex
motor movements with large action spaces (e.g., MyoSim
Hand Pose) whereas domains that require more coarse
movements with lower dimensional action spaces (e.g.,
MyoSim Arm Reach) do not produce as large of a benet
compared to baselines. This insight is important because
stroke patients often struggle with complex tasks requiring
ne motor skills. We show that our approach is the most
effective at learning stimulation policies for these complex
tasks whereas an approach like MBPO may sufce for
simpler tasks that require only gross motor control.

In the adaptive brain stimulation domain, high training re
ward is important for improving patient experience. A sam
pling strategy that produces offtask behavior will likely
be disruptive and frustrating to a patient and could even
pose a risk to the patient’s safety. In our ablation study, we
show that by leveraging the actionvalue model to sample
in an onpolicy manner, CopAC produces higher training
reward compared to random sampling. CopAC’s training
reward contrasts with both SAC and MBRL which utilize
an offpolicy strategy to sample stimulations, resulting in
lower reward. Notably, CopAC’s strategy exhibits a signi
cant advantage in the MyoSim Hand Pose environment. We
hypothesize that this result is due to the fact that this envi
ronment has a much larger action space (39dimensional)
compared to the other environments. This result under
scores the importance of a strategic sampling approach to
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efciently learn a highquality policy in environments with
a substantial action space.

We nd that updating the world actionvalue model is an im
portant component in some domains. However, if all world
actions are realizable by the injured brain or if the unrealiz
able actions are unimportant to task success, then updating
the world actionvalue model may be inconsequential.

Our results show strengths of CopAC in areas particularly
crucial for adaptive brain stimulation. The learned world
actionvalue model enables good performance throughout
training, which is important for patient comfort and safety.
Our approach additionally excels over baselines in complex
tasks requiring negrained control, providing benets in
both sample efciency and performance.

7. Conclusion
Summary: We have introduced CopAC, an MBRL ap
proach for learning a coprocessor policy for stroke patients.
Our key insight is that the optimal stimulation policy is a
combination of modeling optimal world actions and deter
mining how to produce world actions via brain stimulation.
Our approach leverages a simulationderived Qfunction to
model the quality of world actions for a given task. We then
employ this world actionvalue model to intelligently and
efciently learn the mapping from coprocessor stimulations
to world actions. To avoid an overlyoptimistic Qfunction,
we iteratively update the actionvalue model based upon our
current model of the brain. We demonstrate our approach
in both a novel, physiologicallymotivated environment and
standard control tasks. Our approach excels in terms of
sample efciency and overall task reward, surpassing both
MBRL and MFRL methods across all domains. By improv
ing sample efciency 10fold, we take a step towards an
RL approach that can be deployed in vivo. Our hope is to
pave the way for future advancements in applying RL to
closedloop brain stimulation in realworld settings.

Limitations: One limitation of our work is that we only
evaluate CopAC in silico due to the difculty of in vivo
evaluations. The invasive nature of brain stimulation and
potential negative side effects of unsafe stimulation motivate
us to rst validate the efcacy of our approach in simulation
before deploying in the real world. We are also limited by
our reliance on a realistic biomechanical simulator to enable
sample efciency. Since we test in simulation, we have ac
cess to the same environment to learn an actionvalue model
in the rst step of CopAC. Our experiments therefore do not
perfectly reect realworld challenges posed by the gap in
realism between simulators and human patients. Another
challenge of realworld applications is the technology re
quired (e.g., electromyography and vicon) for estimating
world states and actions. Finally, although our approach

minimizes patient interaction, it still requires online learn
ing for which we have not theoretically guaranteed safety.
Such safety guarantees would be crucial for any in vivo
applications.

Future Work: Future work will focus on addressing these
limitations. We will test how the actionvalue model trained
in biomechanical simulation transfers to human patients in
in vivo evaluations. Additionally, we will explore ofine RL
for learning the actionvalue model in circumstances where
a biomechanical simulator is not available. To improve
safety and mitigate patient risk during online learning, in
future work we aim to draw upon existing approaches in
safe RL and we will work closely with clinical collaborators
to ensure that we are safely and appropriately constraining
the stimulation space during in vivo experiments (García &
Fernández, 2015).

Impact Statement
A major ethical concern of automated coprocessor policy
learning is that adaptive brain stimulation can pose a safety
risk to patients if stimulations outside of a safe region are
applied to the brain. To mitigate these risks, in future work,
when deploying CopAC on real patients, we aim to work
closely with clinical collaborators to ensure patient safety
and appropriately constrain the action space during online
learning.

Another ethical consideration involves the possibility of
RL coprocessor approaches being exploited for malicious
control over endusers. Unauthorized manipulation of RL
policies, such as through adversarial attacks, could lead
to unethical interventions and compromise the wellbeing
of individuals with brain implants. To reduce this risk, in
future work, we will draw on prior work in guarding against
adversarial attacks to mitigate potential exploitation (Chen
et al., 2019).
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Appendix

A. Learning Qψ with ofine RL
Our method hinges on learning Qψ without requiring online patient interactions. While we demonstrate that we can leverage
a biomechanical simulator to learn Qψ , in some instances we may not have access to a highdelity simulator. In these cases,
we consider the use of an existing dataset to train Qψ through ofine RL. This approach assumes that we have access to a
historical coprocessor dataset from stimulation policies previously deployed on the patient. We use Conservative Soft Actor
Critic to learn Qψ from this dataset. Once Qψ is learned from the ofine data, we follow the same procedure for learning
F ϕ
brain as discussed in Section 4.2.

Fig. 6 shows the training reward for our approach when Qψ is learned via ofine RL compared to baselines. We show that
CopAC (ofine) performs better than the baselines in most environments but performs slightly worse than CopAC when Qψ

is learned via simulation. This outcome supports the viability of ofine RL as an alternative approach. However, it suggests
that using a biomechanical simulator, when available, is likely a better option for learning Qψ . In future work we aim to
investigate how the amount of data and the suboptimality of the policy used to collect the data affects performance.
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Figure 6. Training reward for CopAC compared to SAC, MBPO, and ablated CopAC. The dashed line represents the reward obtained by
the healthy brain.

B. F ϕ
brain training details

We train F ϕ
brain for 75 epochs with a learning rate of 5e3. The architecture consists of three hidden layers with ReLU

activations consisting of 64, 32, and 8 neurons.

C. Robustness to initialization of F ϕ
brain

To validate that CopAC is robust to the initialization of F ϕ
brain, we additionally run CopAC and ablations across 5 random

seeds . Results are displayed in Figures 7 and 8. Here, we only use a single brain for each environment rather than taking
the average across multiple brains as in our other experiments.
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Figure 7. Training reward for CopAC and ablations. Results from a single seed are displayed alongside results averaged across random
seeds.
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Figure 8. Evaluation reward for CopAC and ablations. Results from a single seed are displayed alongside results averaged across random
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D. Comparison with inverse brain model coprocessor
We additionally compare CopAC to a baseline approach using an inverse brain model to select stimulations. We learn the
inverse brain model F ϕ

inverse : S ×A → Ā that maps world actions to the stimulations that would have induced them. The
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inverse brain model coprocessor policy selects stimulations with F ϕ
inverse to induce world actions returned by the optimal

world policy π, as dened in Eq. (7).

π̄inverse(s) ≜ F ϕ
inverse(s,π(s)) (7)

Algorithm 2 Inverse Brain Model Coprocessor

Require: world MDP M = (S,A, P,R), s0 ∼ p0
Require: stimulation space Ā, injured brain Fbrain
1: initialize F ϕ

inverse
2: while access to simulator do
3: rollout π in M with experiences (s, a, r, s′)
4: t Qψ(s, a) with Equation (4)
5: end while
6: while access to injured brain do
7: rollout π̄inverse in M with experiences (s, ā, r, s′)
8: a ← Fbrain(s, ā)

9: t F ϕ
inverse(s, a) to ā

10: end while
11: return π̄inverse

The inverse brain model approach is presented in Algorithm 2. We evaluate it against CopAC and show a comparison of
their performance during training and evaluation in Figures 9 and 10. We nd that CopAC is able to achieve a higher reward
and better sample efciency compared to the inverse brain model.
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Figure 9. Training results for inverse brain model coprocessor compared to CopAC, ablated CopAC, and baselines.

E. Robustness to sim to real gap
We perform experiments shown in Fig. 11 to simulate the simtoreal gap by systematically altering the dynamics of the
environment during online training and testing while learning F ϕ

brain. We demonstrate that our method is robust to these
effects up to a point and that the online training aspect of our approach can help to account for a mismatch between simulated
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Figure 10. Evaluation results for inverse brain model coprocessor compared to CopAC, ablated CopAC, and baselines.

and real biomechanics. Specically, we show that we can alter gravity by up to 40% during online interaction in Pendulum
and maintain performance. We show that our approach is robust to nearly 30% change in gravity in LunarLander. In our
Myosim environments, we systematically alter the observations during online training and testing and show that the Arm
Reach task maintains performance for 10% shift in observations and Hand Pose can handle nearly a 40% change.

Figure 11. Evaluation reward when altering the environment during online training. We show that our approach is robust to a mismatch
between simulation and reality.
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